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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

CPTAC clinical and proteomic data Li et al.37,160 Proteomic Data Commons (PDC: https://

pdc.cancer.gov/pdc/cptac-pancancer)

CPTAC genomic, transcriptomic data Li et al.37,160 Proteomic Data Commons (PDC:https://

pdc.cancer.gov/pdc/cptac-pancancer),

and Cancer Data Service (CDS: https://

dataservice.datacommons.cancer.gov/)

CPTAC precision proteogenomics data This manuscript Cancer Data Service (CDS: https://

dataservice.datacommons.cancer.gov/)

Software and algorithms

AlphaFold Protein Structure Database

(AlphaFoldDB) v4

Varadi et al.75 and Jumper et al.76 https://alphafold.ebi.ac.uk/

Ancestry prediction Li Ding Lab https://github.com/ding-lab/ancestry

bam-readcount v0.7.4 and v0.8 McDonnell Genome Institute https://github.com/genome/bam-

readcount

BWA v0.7.17-r1188 Li161 http://bio-bwa.sourceforge.net/

CharGer v0.5.4 Scott et al.33 https://github.com/ding-lab/CharGer/tree/

v0.5.4

clusterProfiler v4.4.2 Wu et al.162 https://bioconductor.org/packages/

release/bioc/html/clusterProfiler.html

DNAScope Freed et al.163 https://doi.org/10.1101/115717

Ensembl Variant Effect Predictor (VEP) v100 McLaren et al.164 https://github.com/Ensembl/ensembl-vep

FastQC v0.11.8 Andrews165 https://www.bioinformatics.babraham.ac.

uk/projects/fastqc/

GATK DepthOfCoverage v3.8-0 McKenna et al.166 https://github.com/broadinstitute/gatk

GATK HaplotypeCaller v4.0.0.0 McKenna et al.166 https://github.com/broadinstitute/gatk

GATK VariantEval v3.8-0 McKenna et al.166 https://github.com/broadinstitute/gatk

GermlineWrapper pipeline v1.1 Li Ding Lab https://github.com/ding-lab/

germlinewrapper

GLIMPSE v2.0.0 Rubinacci et al.27 https://github.com/odelaneau/GLIMPSE

HotSpot3D/HotPho v1.8.2 for PDB Li Ding Lab; Niu et al.72 https://github.com/ding-lab/hotspot3d/

tree/ding_lab_internal

HotSpot3D/HotPho for AlphaFoldDB Li Ding Lab; Niu et al.72 https://github.com/ding-lab/hotspot3d/

tree/alphaFold_implementation

Integrative Genomics Viewer (IGV) v2.8.2 Robinson et al.167 https://software.broadinstitute.org/

software/igv/

ImmuneRegulation Kalayci et al.168 https://immuneregulation.mssm.edu/

Matrix eQTL Andrey A. Shabalin https://CRAN.R-project.org/

package=MatrixEQTL

Mosdepth v0.2.4 Pedersen and Quinlan169 https://github.comim/brentp/mosdepth

Mutect v1.7.7 Cibulskis et al.170 https://github.com/broadinstitute/mutect

Picard Toolkit v2.22.4-0 Broad Institute of MIT and Harvard https://github.com/broadinstitute/picard

Pindel v0.2.5 Ye et al.171 https://github.com/genome/pindel

Pymol v2.5.4 The PyMOL Molecular Graphics System,

Version 2.5.4, Schrödinger, LLC.

https://pymol.org/2/

Python v2.7 and v3.7 Python Software Foundation https://www.python.org/

QUILTS v3 Ruggles et al.29 https://quilts.fenyolab.org

(Continued on next page)
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Human subjects
This study includes samples from a total of 1,064 participants for which biospecimens were prospectively collected (tumor, germline

blood, and adjacent normal samples when possible) from more than 30 tissue source sites both domestically and internationally. All

samples were processed by a central biospecimen core resource following a tumor type specific protocol and standard operating

procedures (SOPs). Pathology for all samples was verified by a general pathologist and reviewed by a disease-specific expert pathol-

ogist using histopathology and immunohistochemistry assays. Full details appear in our Pan-Cancer Data and Resource manu-

script160 and Pan-Cancer Driver manuscript.37

Clinical data annotation
Clinical data including sex at birth, age, and self-reported ancestry, race, and ethnicity information can be obtained from the CPTAC

Data Portal and https://pdc.cancer.gov/pdc/cptac-pancancer. Full details appear in our Pan-Cancer Data and Resource manu-

script160 and Pan-Cancer Driver manuscript.37

METHOD DETAILS

Harmonized genome alignment
WGS, WES, and RNA-Seq sequence data were harmonized by NCI Genomic Data Commons (GDC) (https://gdc.cancer.gov/about-

data/gdc-data-harmonization) based on GDC’s HRCh38 human reference genome (GRCh38.d1.vd1), as described in the Pan-

Cancer Data and Resource and Pan-Cancer Driver manuscripts.37,160

Germline variant calling and filtering from WES
WES data from 1,093 normal samples from all 10 cancer types were initially collected for this project. After pathology and clinical

review, 1,064 cases were selected and assessed for quality using FastQC (version 0.11.8 with default parameters).165 Coverage

within target regions was calculated using Mosdepth169 (version 0.2.4 with default parameters, except where -Q 20). Coverage

ranged from 105X - 357X (Figure S1A). All 1,064 samples passed quality control criteria and had >20X average coverage (mapping

quality R 20) across target regions.

As described in our Pan-Cancer Data and Resource and Pan-Cancer Driver manuscripts,37,160 germline variants for samples pass-

ing quality control criteria were identified using the GermlineWrapper pipeline (v1.1; https://github.com/ding-lab/germlinewrapper),

which integrates multiple tools for the identification of germline SNVs and indels. SNVs were detected with VarScan176 (version 2.3.8

with default parameters, except where –min-var-freq 0.08,–p value 0.10,–min-coverage 3,–strand-filter 1, -min-avg-qual 15, -min-

reads2 2, -min-freq-for-hom 0.75) operating on a mpileup stream from SAMtools (version 1.2 with default parameters, except

where -q 1 -Q 13) andGATK166 (version 4.0.0.0, using its Haplotype Caller in single-samplemode excluding duplicate and unmapped

reads and retaining calls with a minimum quality of 10). Germline indels were identified using VarScan (version and parameters as

above), GATK (version and parameters as above) in single-sample mode, and Pindel171 (version 0.2.5b9 with default parameters,

except where -m 6, -w 1, and excluded centromere regions (genome.ucsc.edu)). We used the GRCh38 reference genome and spec-

ified an insertion size of 500 whenever this information was not provided in the BAM header. Single nucleotide variants (SNVs) were

based on the union of raw GATK and VarScan calls. We required that indels were called by Pindel or at least two out of the three

callers (GATK, VarScan, Pindel). Cutoffs of minimal 10X coverage and 20% VAF were used in the final step to report the high-quality

germline variants.

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

R v4.0.3 R Development Core Team https://www.R-project.org

Spectrum Mill (SM) v7.08 Broad Institute of MIT and Harvard https://proteomics.broadinstitute.org

Strelka v2.9.2 Kim et al.172 https://github.com/Illumina/strelka

STRINGdb v11.5 Szklarczyk et al.173 https://www.string-db.org

survminer R package v0.4.9 Kassambara and Kosinski174 https://github.com/kassambara/survminer

RCSB Protein Data Bank (RCSB PDB) as of

June 24th, 2021

Berman et al.77; Berman et al.78 https://www.rcsb.org/

TransVar v2.5.10.20211024 Zhou et al.175 https://github.com/zwdzwd/transvar

Uniprot Knowledge Base v2023_01 The Uniprot Consortium79 https://www.uniprot.org/

VarScan v2.3.8 Koboldt et al.176 https://dkoboldt.github.io/varscan/

vcf2maf Kandoth et al.177 https://doi.org/10.5281/zenodo.593251
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Variants called by GermlineWrapper were required to have an Allelic Depth (AD) R 5 for the alternative allele. Additionally, we

filtered out any indels longer than 100bp. A total of 185,724,997 variants passed these filters (Figure 2A). Variants were also filtered

based on coding regions of full-length transcripts obtained from Ensembl release 100 (Gencode v34) plus the additional two base

pairs flanking each exon that cover splice donor/acceptor sites, resulting in a total of 27,104,152 germline exonic variants across

1,064 samples, or 563,036 unique variants (Figure 2A).

Finally, variants passing filters were assessed for quality by calculating concordance with dbSnP (release 151) and average tran-

sition-transversion (TiTv) ratio using GATK’s166 VariantEval tool (v3.8-0 with default parameters). We achieved 97.43% concordance

with dbSnP, and our germline exomes displayed high quality, with an average TiTv ratio of 2.74. All VCF files were converted to MAF

format using vcf2maf177 with VEP Ensembl v100 annotation.

It is important to clarify that a total of 27,838,075 germline exonic variants (570,645 unique variants) were originally called for the

initial number of 1,093 patients, which were used as inputs for the generation of the precision peptidomics dataset before the cohort

was reduced to 1,064 patients (see STAR Methods: proteomics LC-MS/MS data interpretation section for more details). That is the

only section of the manuscript where the larger cohort was used as input. Results reported everywhere in the manuscript, however,

only focus on events detected in the final cohort of 1,064 patients.

Somatic mutation and copy number variant calling from WES
Full details appear in the Pan-Cancer Data and Resources and Pan-Cancer Driver manuscripts.37,160

Germline variant calling and filtering from WGS
We performed germline variant calling on WGS of blood derived samples from CCRCC, GBM, HNSCC, LSCC, LUAD, PDAC and

UCEC patients using DNAScope.163 Briefly, we implemented a pipeline based on the GATK best-practices and functional equiva-

lence recommendations. We first aligned the raw paired-end WGS FASTQ files to the latest human genome build GRCh38 (GDC

GRCh38.d1.vd1 version) using bwa-mem,161 and then performed duplicate marking. Next, we called variants producing one

gVCF file per-sample, using theDNAScope163 Haplotyper with ‘–emit_mode gvcf‘ using default setting. Next, we genotyped the sam-

ples at a set of high quality variants from 2,504 unrelated samples from Phase 3 of the 1000 Genomes Project, which were re-

sequenced to a depth of 30X by the New York Genome Center (NYGC).28 Finally, to account for the low WGS depth of the

CPTAC samples, we used GLIMPSE27 with default settings to perform genotype imputation and phasing with the same NYGC

1000 Genomes Project genome as the reference panel.

Comparison of WES and WGS variant calls
As a part of quality control, we compared the WES and WGS germline variant calls for seven cancer types (CCRCC, GBM, HNSCC,

LSCC, LUAD, PDAC and UCEC) for whichWGS data was available. Towards this end, we studied the variants in the common regions

between WES and WGS in chromosomes 1-22. In these regions, we identified the number of WES variants and WGS variants and

finally estimated the number of common WES and WGS variants sharing the same genotype (Figure S1E; Table S1D).

Ancestry prediction
We identified likely ancestry for each individual in the CPTAC dataset based on WES data using an in-house random forest classifier

for genetic ancestry (https://github.com/ding-lab/ancestry). By using a reference panel of genotypes and clustering based on prin-

cipal components, we selected a set of 107,765 coding SNPs with minor allele frequency (MAF) > 0.02 from the 1000 Genomes Proj-

ect178 (http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/) and measured their depth and allele counts in each sample

using bam-readcount (version 0.8 with default parameters, https://github.com/genome/bam-readcount). Following, we genotyped

each sample as follows: 0/0 if reference allele count R 8 and alternative allele count < 4; 0/1 if reference allele count R 4 and alter-

native allele countR 4; 1/1 if reference allele count < 4 and alternative allele countR 8; and./. (missing) otherwise. Further, we filtered

out markers with missingness > 5%, after which 70,049 markers remained for analysis. We performed principal component analysis

(PCA) for each group of markers on the 1000 Genomes Project data to identify the top 20 principal components and projected our

cohorts onto the 20-dimensional space representing the 1000 Genomes data. We then trained a random forest classifier with the

1000 Genomes dataset using the 20 principal components we identified, splitting the 1000 Genomes datasets 80/20 for training

and validation, respectively. Our classifier achieved 99.6% accuracy on the validation dataset using models trained with the elected

markers. The fitted classifiers were then used to classify samples into African (AFR), Ad Mixed American (AMR), East Asian (EAS),

European (EUR), or South Asian (SAS). Due to the absence of individuals of Slavic origin in the training dataset, our model misclas-

sified 9 individuals in the GBM, HNSCC, LSCC, PDAC, and UCEC cohorts into the AMR ancestry. This was confirmed using the avail-

able WGS data for these samples, for which we performed PCA using the EIGENSOFT software with the 1000 Genomes reference

dataset28 to estimate ancestry, as described in the Pan-Cancer Data and Resource and Pan-Cancer Driver manuscripts.37,160 Briefly,

for this analysis, we used common variants with a call rate of at least 0.99 and inferred the ancestry of each participant by visualizing

the PCA plot and selecting cutoffs on principal components 1 through 10 corresponding to the five major populations. We then suc-

cessfully classified the 9 individuals into the EUR group (Figure S1F). For the purposes of downstream analyses including principal

component values of ancestry, we have excluded those individuals in order to consistently use the principal components based on

WES data.
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Gene list curation for pathogenic variant classification
We extended the list of 152 cancer predisposition genes (CPGs) previously compiled by Huang et al.16 to a total of 160 CPGs,

by adding 8 genes that contribute to cancer susceptibility based on literature review. This extended gene list of 160 genes was

used as input for our tool CharGer33 (described below) using the –inheritanceGeneList parameter. The source and reference for

each curated predisposition gene are provided in Table S1C. This list of 160 CPGs is used throughout the study for multiple

analyses.

Inference of the ancestral state of germline variants
To avoid potential confusion due to unclear major and minor allele status, that at many variants may vary across human cohorts of

different ancestries, we have derived the ancestral status information for the 27,104,152 exonic germline variant calls fromWES data

in order to polarize according to conservation and assign their effects referring to the novel allele by default. To infer the ancestral

state of each germline variant in our call set, we took advantage of the AncestralAllele.pm plugin provided within the Ensembl’s

Variant Effect Predictor (VEP) tool164 (release 100), which retrieves ancestral allele sequences from a FASTA file for each base po-

sition in the input VCFs. These sequences are based on the Ensembl Compara ancestral sequences for Homo sapiens (GRCh38)

corresponding to Ensembl release 100 and are created using the Enredo-Pecan-Ortheus (EPO) multiple sequence alignmentmethod

for inference of ancestor alignments based on sequences from multiple primates: human (Homo sapiens), chimpanzee (Pan troglo-

dytes), bonobo (Pan paniscus), gorilla (Gorilla gorilla gorilla), orangutan (Pongo abelli), gibbon (Nomascus leucogenys), vervet-AGM

(Chlorocebus sabaeus), crab-eating macaque (Macaca fascicularis), macaque (Macaca mulatta), mouse lemur (Microcebus

murinus).179,180

We then parsed and assigned the ancestral state of our germline variants, consisting of three different cases. First, for those var-

iants where an ancestral state status was not available, or those insertions, deletions, and oligonucleotide variants in which the in-

ferred ancestral allele did notmatch any of the two alleles called in our study, the polarization statewas left undetermined. Second, for

variants in which the ancestral sequencematched the reference allele called from theHomo sapiens reference genome, the assigned

ancestral state was ancestral (i.e. the Homo sapiens reference allele is the same as the ancestral allele and the Homo sapiens alter-

native allele is the derived allele). Third, for variants in which the ancestral sequence matched the alternative allele called from the

Homo sapiens reference genome, the assigned ancestral status was derived (i.e. the Homo sapiens alternative allele is the same

as the ancestral allele and the Homo sapiens reference allele is now the derived allele). Although the reference allele generally cor-

responds to both the ancestral allele and the major allele for most variants in the human genome, by polarizing our analyses to

describe the effects of the derived (novel) allele for all variants instead of the major/minor status particular to our cohort, our proced-

ure ensures the evolutionary interpretation and eases future transferability across cohorts of different ancestries. In summary, across

our analyses we refer to ancestral (ANC) and derived (DER) alleles instead of major and minor alleles, respectively.

QUANTIFICATION AND STATISTICAL ANALYSIS

Pathogenicity assessment of rare germline variants
Germline variants called with GermlineWrapper were annotated with the Ensembl Variant Effect Predictor (VEP)164 (version 100 with

default parameters, except where –everything) and their pathogenicity was determined (as described in the Pan-Cancer Data and

Resource and Pan-Cancer Driver manuscripts.37,160) with our automatic pipeline CharGer33 (version 0.5.4 with default CharGer

scores, https://github.com/ding-lab/CharGer/tree/v0.5.4), which prioritizes variants based on the guidelines by the American College

of Medical Genetics and Genomics - Association for Molecular Pathology (ACMG-AMP).181 CharGer retrieves information from the

ClinVar (release as of 08/15/2019 parsed using codes from MacArthur lab ClinVar, https://github.com/macarthur-lab/clinvar) and

gnomAD182 (r2.1.1) databases, as well as computational tools, including SIFT183 (v5.2.2) and Polyphen184 (v2.2.2), to inform the im-

plementation of 12 pathogenic and 4 benign evidence levels for the classification of germline variants. The detailed implementation

and score of each evidence level, as well as parameters used are as previously described.16

We further selected rare variants with% 0.05% allele frequency (AF) in gnomAD (r2.1.1) or 1000 Genomes.178 We also performed

read count analysis using bam-readcount (https://github.com/genome/bam-readcount; version 0.8 with parameters -q 10, -b 15) to

evaluate the number of reference and alternative alleles for each variant. We required variants to have at least 5 counts of the alter-

native allele and a variant allele frequency (VAF) of at least 20% in both tumor and normal samples. Variants remaining after these

filters were manually reviewed with the Integrative Genomics Viewer (IGV) software167 (v2.8.2). We considered variants to be path-

ogenic (P) if they were known pathogenic variants in ClinVar; likely pathogenic (LP) if CharGer score > 8; and prioritized variant of

uncertain significance (PVUS) if CharGer score > 4. A list of all variants passing manual review and their information are displayed

in Table S2.

Burden testing analyses of rare P/LP germline variants
We performed burden testing of rare P/LP variants using the Total Frequency Test (TFT),185 which applies a one-sided Fisher test to

detect genes enriched for P/LP variants in the combined set of samples from TCGA and CPTAC cohorts versus controls. For this, we

collapsed P/LP germline variants detected in the same gene and applied the total allele counts of P/LP variants identified in the gno-

mAD (r2.1.1) non-cancer cohort (n=118,479) using the CharGer pipeline described above as controls. We also tested burden for each
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cancer type and each gene using all other cancer types as controls, subtracting out the cohorts with suggestive enrichment for the

specific gene in the gnomAD analyses.We used the standard Benjamini-Hochberg procedure to adjust the resulting p-values to FDR.

We defined significant events if FDR % 0.05, and suggestive events if FDR % 0.15.

LOH analysis of rare P/LP germline variants
Analysis of loss-of-heterozygosity (LOH) events can help identify germline variants that are positively selected in the tumor by

comparing the VAF in the tumor to that in the normal. We first estimated read counts for each variant in both normal and tumor sam-

ples for our CPTAC cases using bam-readcount (https://github.com/genome/bam-readcount) (v0.8 with parameters -q 10, -b 15).

Then, LOH events were identified using a one-tailed Fisher’s exact test between tumor and matched normal samples to

detect germline variants for which VAF in the tumor was significantly higher than the VAF in the matched normal. The resulting

p-values were adjusted to FDR using the Benjamini-Hochberg procedure. We considered LOH to be significant if FDR % 0.05

and suggestive if FDR % 0.15.

Proteomics LC-MS/MS data interpretation
MS/MS spectra from all omes were interpreted from using SpectrumMill (SM) v7.08 (proteomics.broadinstitute.org) to provide iden-

tification and relative quantitation at the protein, peptide, and post-translational modification (PTM) site (phospho and acetyl) site

levels.

Precision sequence databases

For searching with LC-MS/MS datasets from all omes we generated a cohort-level precision protein sequence database for each

tumor type starting with a base human reference proteome to which we appended non-redundant somatic mutations and germline

variants and indels for each of the �100 participants/cohort. The base proteome consisted of the human reference proteome Gen-

code v34 (ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_34/) with 47,429 non-redundant protein coding tran-

script biotypes mapped to the human reference genome GRCh38, 602 common laboratory contaminants, 2,043 curated smORFs

(lncRNA and uORFs), 237,427 novel unannotated ORFs (nuORFs) supported by ribosomal profiling nuORF DB v1.0186 for a total

of 287,501 entries. The personalized protein sequence entries were prepared by processing the individual participant’s somatic

and germline variant calls from whole exome sequencing data, described above, using QUILTS v329 with no further variant quality

filtering using an Ensembl v100 reference proteome and reference genome for sequence identifiers consistent with the variant calling.

Gencode v34 is a contemporaneous subset of Ensembl v100 (March 2020). From the unique germline variants originally called for the

initial cohort of 1,093 participants (570,645 unique variants) in the 10 cohorts (see above STARMethods: germline variant calling and

filtering fromWES), 342,311 unique coding, non-synonymous germline SAAVs and indels from the standard chromosomes (1-22, X,

and Y) were mapped into proteins in the Gencode v34 reference proteome to use for peptide searches (337,469 unique variants

pertain to the final cohort of 1,064 patients). A total of 232,228 unique somatic variants and indels were similarly mapped into Gen-

code v34. It is important to note that numbers of unique germline variants reported elsewhere in the manuscript are slightly different

than what is reported in this section of STAR Methods because the number of patients included in the study was reduced to 1,064

after clinical and pathology review. The rest of the manuscript only reports results focusing on this final cohort. The range of germline

variant counts across tissues (75K UCEC to 108K BRCA) was considerably narrower than for somatics (5K PDAC to 57K UCEC).

Germline variants were also much more frequently shared amongst multiple participants in a cohort (4.6% UCEC to 51% BRCA)

than somatics (0.02% PDAC to 0.37% COAD). Using the SM Protein Database utilities the base reference proteome and individual

patient proteomes were combined and redundancy removed to produce a cohort-level protein sequence database and a variant

summary table to enable subsequent mapping of sequence variants identified in Tandem Mass Tag (TMT) multiplexed LC-MS/

MS datasets back to individual patients. After accounting for unique tryptic peptides of length 8-40 with 0 missed cleavages the

LUAD search space is 58% Gencode v34 reference proteome, 39% nuORFs, and 9% germline/somatic variants. Other cohorts in

the study had greater or lesser germline/somatic content in proportion to the sample size.

Each somatic and germline variant is included in the database by way of a full length copy of its reference protein sequence with a

single AA change to retain the positional location within the full-length protein. Driven by the germline variants, the average redun-

dancy of each tryptic peptide rises from 1.9 fold for the reference proteome alone to a range of 7 to 10 fold for these 10 cohort-level

precision databases.

Our SpectrumMill workflow incorporates 3 features that mitigate a search bogging down due to the wild type peptide redundancy.

1) A single copy of an SAAV containing protein is included in the sequence database when it occurs in multiple patients in the cohort.

2)Matches towild-type peptides in the personalized protein entries are not reported, otherwise the resultswould be swampedwith all

the protein identifiers from the germline entries. 3) While SM’s search engine digests all protein entries when processing a database

during a search, peptide spectrummatching with anMS/MS spectrum is done on only one copy of each peptide by constructing and

consulting a hash of all tryptic peptides and the protein identifiers in which they occur.

Spectrum quality filtering

For all omes, similar MS/MS spectra with the same precursor m/z acquired in the same chromatographic peak were merged. The

precursor MH+ inclusion range was 800-6,000, and the spectral quality filter was a sequence tag length > 0 (i.e., minimum of two

peaks separated by the in-chain mass of an amino acid).
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MS/MS search conditions

Using the SM MS/MS search module for all omes parameters included: ‘‘trypsin allow P’’ enzyme specificity with up to 4 missed

cleavages; precursor and product mass tolerance of ± 20 ppm; 30% minimum matched peak intensityScoring parameters were

ESI-QEXACTIVE- HCD-v2, for whole proteome datasets, and ESI-QEXACTIVE-HCD-v3, for phosphoproteome and acetylome. Al-

lowed fixed modifications included carbamidomethylation of cysteine and selenocysteine. TMT labeling was required at lysine,

but peptide N-termini were allowed to be either labeled or unlabeled. Allowed variable modifications for whole proteome datasets

were acetylation of protein N-termini, oxidized methionine, deamidation of asparagine, hydroxylation of proline in PG motifs,

pyro-glutamic acid at peptide N-terminal glutamine, and pyro-carbamidomethylation at peptide N-terminal cysteine with a precursor

MH+ shift range of -18 to 97 Da. For all PTM-omes variable modifications were revised to omit hydroxylation of proline and allow

deamidation only in NG motifs. The phosphoproteome was revised to allow phosphorylation of serine, threonine, and tyrosine

with a precursor MH+ shift range of -18 to 272 Da. The acetylome was revised to allow acetylation of lysine with a precursor MH+

shift range of -400 to 70 Da.

We used the in silico enzyme specificity, trypsin allow P, which omits the followed by P exception, to accommodate our two pro-

tease lysis/digestion protocol (Lys-C/Trypsin). While trypsin cleaves after lysine (K) and arginine (R) except when followed by proline

(P), Lys-C cleaves after K with a reduced capacity for cleaving at KP. Extending to 4 missed cleavages (rather than a more conven-

tional 2 for a trypsin only protocol) accommodates RP sites being counted as missed cleavages where they otherwise would not be

with an ordinary trypsin specificity.

The allowed modifications were included because they are quite common in studies of this type, and failure to allow for them will

otherwise lead to loss of these identifications with some of the spectra for those modified peptides becoming lower scoring false-

positive identifications to an unmodified peptide. Modifications with positional constraints contribute tiny increases in search space

size: <1.05 fold for pyro-Q/C at peptide N-termini, < 1.01 - fold for protein N-terminal acetylation, and <1.05 fold for hydroxyproline at

PG sites, typically detected only in collagen domains of proteins. With Spectrum Mill the N-terminal modifications could not be

considered without also allowing peptide N-termini to lack a TMT label (2-fold increase in search space size). The TMT labeling in

our studies is >90% complete, with incomplete labeling mostly at N-termini rather than lysine due to the difference in reactivity of

the primary amines at those sites. Search space size increases >2-fold due to each phosphorylation at serine(S), threonine(T),

and tyrosine(Y), acetylation of lysine, oxidation at methionine(M), and deamidation at asparagine(N). In phosphoproteome and ace-

tylome searches the deamidation contribution is diminished to �1.05 fold increase with the chemically favored positional constraint

of an NG motif.

PTM site localization

Using the SM Autovalidation and Protein/Peptide Summary modules for the PTM-ome datasets results were filtered and reported at

the phospho and acetyl site levels. When calculating scores at the variable modification (VM) site level and reporting the identified VM

sites, redundancy was addressed in SM as follows: a VM-site table was assembled with columns for individual TMT-plex experi-

ments and rows for individual VM-sites. PSMs were combined into a single row for all non-conflicting observations of a particular

VM-site (e.g., different missed cleavage forms, different precursor charges, confident and ambiguous localizations, and different

sample-handlingmodifications). For related peptides, neither observations with a different number of VM-sites nor different confident

localizations were allowed to be combined. Selecting the representative peptide for a VM-site from the combined observations was

done such that once confident VM-site localization was established, higher identification scores and longer peptide lengths were

preferred. While an SM PSM identification score was based on the number of matching peaks, their ion type assignment, and the

relative height of unmatched peaks, the VM site localization score was the difference in identification score between the top two lo-

calizations. The score threshold for confident localization, > 1.1, essentially corresponded to at least 1 b or y ion located between two

candidate sites that has a peak height > 10% of the tallest fragment ion (neutral losses of phosphate from the precursor and

related ions as well as immonium and TMT reporter ions were excluded from the relative height calculation). The ion type scores

for b-H3PO4, y-H3PO4, b-H2O, and y-H2O ion types were all set to 0.5. This prevented inappropriate confident localization assign-

ment when a spectrum lacked primary b or y ions between two possible sites but contained ions that could be assigned as either

phosphate-loss ions for one localization or water loss ions for another localization.

Protein grouping of PSMs, peptides and PTM sites

Using the SM Autovalidation and Protein/Peptide summary modules results were filtered and reported at the protein level. Identified

proteins were combined into the same protein group if they shared a peptide with sequence length greater than 8. A protein group

could be expanded into subgroups (isoforms or family members) when distinct peptides were present which uniquely represent a

subset of the proteins in a group. For the proteome dataset the protein grouping method ‘‘expand subgroups, top uses shared’’

(SGT) was employed which allocates peptides shared by protein subgroups only to the highest scoring subgroup containing the pep-

tide. For the PTM-ome datasets the protein grouping method ‘‘unexpand subgroups’’ was employed which reports a VM-site only

once per protein group allocated to the highest scoring subgroup containing the representative peptide. The SM protein score is the

sum of the scores of distinct peptides. A distinct peptide is the single highest scoring instance of a peptide detected through an MS/

MS spectrum. MS/MS spectra for a particular peptide may have been recorded multiple times (e.g., as different precursor charge

states, in adjacent bRP fractions, modified by deamidation at Asn or oxidation of Met, or with different phosphosite localization),

but are still counted as a single distinct peptide.
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Peptide spectrum match (PSM) filtering and false discovery rates (FDR)

Using the SM Autovalidation module peptide spectrummatches (PSMs) for individual spectra were confidently assigned by applying

target-decoy based FDR estimation to achieve <1.0% FDR at the PSM, peptide, VM site and protein levels. For the whole proteome

dataset thresholdingwas done in 3 steps: at the PSM level, the protein level for each TMT-plex, and the protein level for the cohort of 2

TMT-plexes. For the PTM omes (phosphoproteome and acetylome datasets), thresholding was done in two steps: at the PSM level

for each TMT-plex and at the VM site level for the cohort of 2 TMT-plexes. In step 1 for all datasets, PSM level autovalidation was done

first and separately for each TMT-plex experiment using an auto-thresholds strategywith aminimum sequence length of 7; automatic

variable range precursor mass filtering; with score and delta Rank1 - Rank2 score thresholds optimized to yield a PSM level FDR

estimate for precursor charges 2 through 4 of < 0.8% for each precursor charge state in each LC-MS/MS run. To achieve reasonable

statistics for precursor charges 5-6, thresholds were optimized to yield a PSM-level FDR estimate of < 0.4% across all runs per TMT-

plex experiment (instead of per each run), since many fewer spectra are generated for the higher charge states.

In step 2 for the PTM omes: phosphoproteome and acetylome datasets VM site polishing autovalidation was applied across both

TMT plexes to retain all VM site identifications with either aminimum id score of 8.0 or observation in n TMT plexes (n=4, 3, or 2 if > 20,

7, or 1 plexes/cohort, respectively). The intention of the VM site polishing step is to control FDR by eliminating unreliable VM site level

identifications, particularly low scoring VM-sites that are only detected as low scoring peptides that are also infrequently detected

across TMT plexes in the study. Using the SM Protein/Peptide Summary module to make VM-site reports the ubiquitylome and ace-

tylome datasets are further filtered to remove peptides ending with the regular expression [̂K][̂K]k since trypsin and Lys-C cannot

cleave at a acetylated lysine. The [̂K] means retain if unmodified Lys present in one of the last two positions to allow for a missed

cleavage with ambiguous PTM-site localization. C-terminally acetylated lysines are present in the acetylome dataset, but have

been shown to arise from artifactual modification during TMT-labeling after trypsin digestion.

In step 2 for the whole proteome dataset, protein polishing autovalidation was applied separately to each TMT-plex experiment to

further filter the PSMs using a target protein level FDR threshold of zero. The primary goal of this step was to eliminate peptides iden-

tified with low scoring PSMs that represent proteins identified by a single peptide, so-called ‘‘one-hit wonders.’’ After assembling

protein groups from the autovalidated PSMs, protein polishing determined the maximum protein level score of a protein group

that consisted entirely of distinct peptides estimated to be false-positive identifications (PSMs with negative delta forward-reverse

scores). PSMswere removed from the set obtained in the initial peptide level autovalidation step if they contributed to protein groups

that had protein scores below the maximum false-positive protein score. Step 3 was then applied, consisting of protein polishing

autovalidation across all TMT plexes in a cohort together using the protein grouping method ‘‘expand subgroups, top uses shared’’

to retain protein subgroups with either a minimum protein score of 25 or observation in TMT plexes (n=4, 3, or 2 if > 20, 7, or 1 plexes/

cohort, respectively). The primary goal of this step was to eliminate low scoring proteins that were infrequently detected in a cohort.

As a consequence of these two protein- polishing steps, each identified protein reported in the study comprised multiple peptides,

unless a single excellent scoring peptide was the sole match and that peptide was observed in multiple TMT-plexes.

Subset-specific FDR filtering for germline variant containing peptides in the proteome

While peptides in the proteome dataset matched to reference proteome sequences are subject to multi-step, protein-level and

cohort level FDR filtering as described above, FDR for subsets of rarely observed (<5% of total) classes of peptides required

more stringent score thresholding to reach a suitable subset-specific FDR < 1.0%. To this end, we devised and applied subset-spe-

cific filtering approaches.

The subset of peptides containing single amino acid variants (SAAVs) and indels observed in the proteomewas extracted after step

1 of PSM filtering described above using the SM Protein/Peptide Summary module to create a proteogenomics (PG) site report, with

quantitation normalized to nullify the effect of differential protein loading using the aggregate protein-level normalization factors from

the fully filtered proteome dataset. Germline variants containing peptides were split up into 4 subsets (SAAVs and indels, with each

further split by multiple or single representation in a cohort) and each subset was filtered to <1% FDR.

Subsets were thresholded independently in each subset using a 2-step approach. First, PSM scoringmetric thresholds were tight-

ened in a fixedmanner so that distributions for eachmetric improved tomeet or exceed the aggregate distributions. The fixed thresh-

olds were: minimum score: 7; minimum percent scored peak intensity: 50%; normalized precursor mass error: +/-5 ppm. Second,

individual subsets with FDR estimates remaining above 1% were further subject to a grid search to determine the lowest values of

backbone cleavage score (sequence coverage metric) and score (fragment ion assignment metric) that improved FDR to < 1% for

each subset.

Quantitation using TMT ratios

Using the SMProtein/Peptide Summarymodule, a protein comparison report was generated for the proteome dataset using the pro-

tein grouping method ‘‘expand subgroups, top uses shared’’ (SGT). For the PTM omes (phosphoproteome and acetylome datasets)

VariableModification site comparison reports limited to either phospho, or acetyl sites, respectively, was generated using the protein

groupingmethod ‘‘unexpand subgroups.’’ Relative abundances of proteins and VM-sites were determined in SM using TMT reporter

ion log2 intensity ratios from each PSM. TMT reporter ion intensities were corrected for isotopic impurities in the SM Protein/Peptide

Summary module using the afRICA correction method, which implements determinant calculations according to Cramer’s Rule and

correction factors obtained from the reagent manufacturer’s certificate of analysis for each cohort. Each protein-level or PTM site-

level TMT ratio was calculated as the median of all PSM-level ratios contributing to a protein subgroup or PTM site. PSMs were

excluded from the calculation if they lacked a TMT label, had a precursor ion purity < 50% (MS/MS has significant precursor isolation
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contamination from co-eluting peptides), or had a negative delta forward-reverse identification score (half of all false-positive iden-

tifications). Using the SM Process Report module non-quantifiable proteins and PTM sites (ex: unlabeled peptides containing an

acetylated protein N-terminus and ending in arginine rather than lysine) were removed, and median/MAD normalization was per-

formed on each TMT channel in each ome to center and scale the aggregate distribution of protein-level or PTM site-level log-ratios

around zero in order to nullify the effect of differential protein loading and/or systematic MS variation. When subsets of an ome

(nuORF or SAAVs, etc) the TMT ratios were normalized using the normalization factors for the aggregate distribution of the corre-

sponding ome.

It is worth noting that current precision database methods separately quantify different forms of a peptide (reference sequence,

variant–containing, phosphorylated, unphosphorylated, etc.) having distinct peptide masses and retention times in TMT labeled ra-

tio-based LC-MS/MS experiments. A TMT labeled experiment is purpose-built tomeasure ratios of an individual peptide form across

samples, which are combined so that each sample in a TMT-plex produces a reporter ion of distinct m/z in each MS/MS spectrum.

The TMT reporter ion intensities of the reference sequence and variant-containing forms of a peptide cannot be directly combined to

form a single value representing the overall peptide abundance since the MS/MS spectra will have been briefly sampled at different

points in their corresponding chromatographic peaks.187 Protein- or gene-level quantification will mitigate this effect by relying on

multiple other wild-type (WT)-only peptides. In contrast, PTMmeasurements may be more affected since they are usually measured

as single peptides.

Germline Variants Co-localizing with or Around PTM sites
Input data

From a total of 27,104,152 germline variants called from WES data, we selected 11,962,341 missense germline variants across our

1,064 samples over 10 cancer types to find germline variants directly co-localizing or nearby a PTM site.

As per PTM data, we obtained a total of 141,330 unique phosphorylation sites detected in at least one of the samples in our CPTAC

cohort (134,244 on reference peptides and 7,086 on variant peptides affected by germline SAAVs) and 23,756 unique acetylation

sites (23,190 on reference peptides and 566 on variant peptides affected by germline SAAVs). Sites detected on the same peptide

sequence were considered as separate individual sites yielding a total of 168,423 and 9,018 phosphorylation sites on reference and

variant peptides, respectively, and 24,109 and 639 acetylation sites on reference and variant peptides, respectively.

Calculation of linear distances

Missense variants co-localizing with PTM sites involving serine (S), threonine (T), tyrosine (Y), or lysine (K) codons were cross-refer-

enced in the PTM data for cognate positions. PTM associated germline variants were grouped according to the three types of con-

sequences at the PTM level: (1) an amino acid change caused loss of the PTM site; (2) a variant caused gain of a PTM site not encoded

by the reference allele; or, (3) one phosphorylated residue changed to another (such as from a serine to a tyrosine, with phosphor-

ylation detected in both). The ancestral and derived alleles were compiled for all the co-localizing variants. In three specific cases:

AHNAK S4516N, FAM83B S729T, and FLG S3174C the reference-associated phosphorylated serine detected in the PTM data

was derived from the ancestral annotation (T4516N, P729T, and G3174C, respectively). Therefore, these variants were excluded

from the analysis.

We also detected variants around a PTM site by calculating the linear distance of missense germline variants relative to PTM sites

based on amino acid position as extracted from reference peptides, classifying events using 2 categories: missense variants

affecting an amino acid within 5 amino acids of the PTM site were categorized as proximal events; variants affecting amino acids

beyond 5 amino acids of the PTM site were categorized as distal. We further confirmed if the amino acid changes predicted from

germline variant information matched what was detected in the variant peptide information, when existent. In terms of variants prox-

imal or distal to a site, because most variants distal to a PTM site and a portion of proximal variants fell outside the peptide capture of

the PTM site in question, we would not expect to detect a variant-derived peptide for such cases. These direct, proximal, and distal

events were used for downstream analyses.

Analyses of Direct, Proximal, and Distal Impact of Germline Variants on Protein and PTM Levels
We assessed the potential influence of a germline variant direct, proximal, or distal to a PTM site on the overall protein abundance

levels using a general linear model approach. We also tested the effects of germline variants on phosphorylation and acetylation

levels of reference peptides using the same approach, but only those variants for which the position fell outside the peptide capture

of the PTM site in question in order to limit the possibility of bias in the mass spec measures (See limitations of the study and quan-

titation using TMT ratios STAR Methods section). Therefore, for variants directly overlapping a PTM site, we only tested their impact

on the overall protein abundance, not on PTM levels. Common germline variants (gnomAD AF R1%) were tested individually. In

the case of low frequency and rare germline variants (gnomAD AF <1%), to increase statistical power, we collapsed all

individuals harboring a low frequency/rare variant proximal (within 5 amino acids), or all individuals with a low frequency/rare variant

distal (> 5 amino acids) to a PTM site into a single variable, at the gene level. In order to test the pan-cancer differences in protein,

phosphorylation, or acetylation levels between carriers and non-carriers of a certain germline variant, we ran the following model to

learn the b coefficients:

Y = b0 + b1Mv + b2P1 + b3P2 + b4P3 + b5C + e
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where Y is a (n x 1) vector representing the protein, phosphorylation, or acetylation abundance of the protein of interest for the site of

interest; M is a binary vector indicating the germline variant status for the site of interest (v) for each sample; P1-3 denote the first three

PCs for patient genetic ancestry determination (WES-based); and C is the one-hot encoded cancer type for the samples. The error (e)

is assumed to be normally distributed with a constant variance. Tumor samples and matching NAT samples were tested separately.

Cancer-type specific analyses were also performed. All resulting p-values were adjusted to FDR using the standard Benjamini-

Hochberg procedure. The results from these tests are provided in Table S3.

Using the same approach as above, we also tested for the effects of highlighted variants from the direct/proximal/distal analyses

on their Kyoto Encyclopedia of Genes andGenomes (KEGG) pathway partners’ protein and phosphoprotein abundances. That is, we

evaluated ‘‘mTOR signaling’’ for DEPTOR S389N (hsa04150), ‘‘ErbB signaling’’ for ERBB2 P1170A (hsa04012), ‘‘MAPK signaling’’ for

MAP2K2 P298L (hsa04010), ‘‘Antigen processing and presentation’’ for HLA-B V69A (hsa04612), ‘‘Apoptosis’’ for CASP8 D344H

(hsa04210), and ‘‘Cell cycle’’ for ATRX E929Q (hsa04110). BecauseMGMT is not amember of any KEGGpathways, it was not tested.

We similarly did not test SBDS, which is only in the general "Ribosome biogenesis in eukaryotes" pathway. The analyseswere done at

both pan-cancer and cancer-specific levels, in which we required at least 5 observations each in variant carriers and non-carriers to

test. Resulting p-values were FDR adjusted using the standard Benjamini-Hochberg procedure, and all hits from the general linear

model with FDR% 0.05 were prioritized for plotting by carrier status. PairwiseWilcoxon tests between carrier groupswere performed

for plotting, and FDR adjusted p-values are provided within the boxplots.

To determine whether the genes harboring PTM-affecting germline variants exhibited any biological bias, we conducted an over-

representation analysis of curated pathways from the MiSigDB Hallmark188,189 set and Wiki Pathways.190 For genes with variants

directly overlapping PTM sites imposing phosphorylation loss and gain, the background gene set was defined as all genes detected

in the phosphoproteome data. All acetylated proteins detected in the PTM data were similarly used for background adjustment for

genes that experience acetylation site loss or gain. The R package clusterProfiler v4.4.2 was used to conduct these analyses for each

PTM type and consequence group separately. Results were constricted to a cutoff of 0.05 FDR adjusted p-value and a q-value cutoff

of 0.1. A similar analysis was performed for proximal and distal events. In this case, genes harboring variants proximal or distal to a

PTM site were used as the test gene set, testing each group separately. The background gene sets and significance cut-offs were

defined as above.

HotSpot3D / HotPho analyses
Input PTM data

Here, we collected information for every PTM site detected on both reference and variant peptides in at least one of the samples in our

CPTAC cohort via our analyses of proteomics LC-MS/MS data (See proteomics LC-MS/MS data interpretation STAR Methods sec-

tion for more details). In total, 8,046 PTM sites (7,353 phosphosites and 693 acetylation sites) were detected on variant peptides

affected by germline SNVs or Indels in at least one of our samples. For the purposes of HotSpot3D/HotPho analyses, however,

we have excluded PTM sites on variant peptides affected by germline Indels.

We obtained 141,330 unique phosphorylation sites detected in at least one of the samples in our CPTAC cohort, from which

134,244 are on reference peptides and 7,086 are on variant peptides affected by germline SAAVs. As per acetylation sites, we ob-

tained 23,756 unique acetylation sites, from which 23,190 are on reference peptides and 566 are on variant peptides affected by

germline SAAVs. Further, sites detected on the same peptide sequencewere considered as separate individual sites for the purposes

of using it as an input for HotSpot3D72 due to the format required by the tool, yielding a total of 168,423 and 9,018 phosphorylation

sites on reference and variant peptides, respectively, and 24,109 and 639 acetylation sites on reference and variant peptides, respec-

tively. Of these, 123,676 phosphorylation sites and 23,646 acetylation sites are unique and were used as inputs for HotSpot3D/

HotPho. To map amino acid residues on different protein isoforms between UniProt Knowledge Base (UniProtKB, version

2023_01)79 and our dataset, we used Transvar,175 which allowed us to map them to their unique genomic positions.

Input somatic mutation and germline variant data

Somatic mutations and germline variants detected from WES, as described above, were filtered for missense single nucleotide

events. Therefore, from a total of 345,653 and 27,104,152 exonic somatic mutations and germline variants called from WES data,

respectively, we selected 183,503 missense somatic mutations and 11,962,341 missense germline variants across our 1,064 sam-

ples over 10 cancer types as inputs for HotSpot3D/HotPho.

PDB and AlphaFoldDB structures

We used the GRCh38 assembly and Ensembl release 100 (Gencode v34) in order to preprocess residue pair data for all human pro-

teins available in two databases: (1) the RCSB Protein Data Bank (RCSB PDB)77,78 as of June 24th, 2021, which contains PDB struc-

tures for 7,780 proteins; and (2) the AlphaFold Protein Structure Database (AlphaFoldDB - AFDB)75,76 v4, as of March 16th, 2023,

which contains predicted protein structures from 19,966 proteins present in Uniprot. For PDB, we filtered out chains or structures

due to artifacts, as previously described.73 For AFDB, HotSpot3D’s algorithm pulls information from the web page version of the

database, which provides information for proteins up to 2700 amino acids long. For those proteins which are longer than 2700aa,

AFDB provides 1400aa long overlapping fragments, for which only the first 1400aa are available in the webpage version used here.
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Quality control

As described before,73 HotSpot3D/HotPho takes as input a file containing all PTM sites of interest containing the following informa-

tion for each: the HUGO gene symbol, the corresponding Ensembl transcript ID, the protein residue position, and a summarized

description of the site (e.g. Phosphoserine, Acetyllysine, etc). This information is then passed through the software, together with

the input germline variant and somatic mutation information, to find pairwise relationships between mutations and sites. For the pur-

poses of these analyses, we use the word ‘‘mutations’’ to describe both somatic and germline events. For PDB, because the struc-

tures provided by uploaders in the database do not always directly map to the associated Uniprot entries, HotSpot3D/HotPho cal-

culates offsets in residue numbers in PDB structures and transcripts. For AFDB, because we are dealing with computationally

predicted structures, the residues at the same position between the database structure and the Uniprot entry may not always

perfectly match. Therefore, we have filtered out any sites where the residue provided in the PDB or AFDB structure did not match

the residue in the input phosphorylation or acetylation site data, resulting in the following results for each input database: (1) PDB:

41,748 mutation-mutation pairs, 13,072 mutation-site pairs (4,625 excluded), and 11,328 site-site pairs (5,414 excluded); (2)

AFDB: 110,255 mutation-mutation pairs; 29,888 mutation-site pairs (3,282 excluded), and 32,946 site-site pairs (4,972 excluded).

Cluster discovery and filtering

We have implemented HotSpot3D72 and HotPho73 to allow for the co-clustering of bothmissense germline variants and somatic mu-

tations with phosphorylation and acetylation sites on the 3Dprotein structures (Figure 4A), as previously described.73 Briefly, we used

HotSpot3D to calculate the 3D distances between mutations and PTM sites using structures from PDB, as well as predicted struc-

tures fromAFDB. During this process, missense variants and PTM sites are considered as nodes and the 3D distances between them

as edges on an undirected graph. The clusters are then calculated using the Floyd–Warshall shortest-paths algorithm and using

recurrence as the vertex type and clustering distance of 10Å, as implemented in HotSpot3D.72 These analyses yielded a total of

15,132 unfiltered clusters across 4,409 unique proteins using PDB structures (2,084 site-only, 9,558 mutation-only, 3,490 hybrid),

and 96,719 unfiltered clusters in 15,655 unique proteins using AFDB structures (14,788 site-only, 62,437 mutation-only, 19,494

hybrid).

We further filtered clusters based on the cluster closeness score (Cc), for which a high score indicates a cluster enriched in mu-

tations and PTM sites on the 3D protein structure. Here we use a threshold of top 5% to select high confidence intramolecular clus-

ters for downstream analyses, as described in the previous HotSpot3D and HotPho studies.72,73 This generated a final set of 210

hybrid, 509 mutation-only, and 111 site-only clusters from PDB and 978 hybrid, 3126 mutation-only, 731 site-only clusters from

AFDB. These results are provided in Table S4.

Impact on protein abundance analyses

We applied a linear model to evaluate the protein abundance level differences between carriers and non-carriers of co-clustered mu-

tations and/or PTM sites within the same intramolecular cluster. We ran the model to learn the b coefficients as follows:

Y = b0 + b1Mv + b2P1 + b3P2 + b4P3 + b5C + b5N + e

where Y is a (n x 1) vector representing the protein abundance of the protein of interest for the cluster of interest; M is a binary vector

indicating the co-clustered status (v) for each sample (i.e. if a sample had any event co-clustered in a particular cluster, it was grouped

here); P1-3 denote the first three PCs for patient genetic ancestry determination (WES-based); C is the one-hot encoded cancer type

for the samples, and N is the CNV value for the gene being tested, as determined by GISTIC2. The error (e) is assumed to be normally

distributed with a constant variance.

Cancer-type specific analyses were also performed in the same way, where we evaluated the effect of germline and somatic var-

iants involved in hybrid clusters on protein abundance levels between carriers and non-carriers to find genetic changes potentially

associated with a certain cancer type.

Analyses of phosphorylation and acetylation levels were not performed in this case due to the limitations addressed in this manu-

script (See limitations of the study).

Allele specific expression analysis using RNA-seq data
To identify allele specific expression (ASE) events based on RNA-seq, we used 1,057 tumor and 340 NAT samples with

available RNA-seq data. For these analyses, we used only SNVs in cancer-related genes (624 cancer related genes17). First,

germline variants were filtered to the ones that were detected in either of the three datasets: proteome, phosphoproteome, or ace-

tylome. Next, we calculated read counts for each variant in each sample’s RNA-seq BAM files using bam-readcount (v0.7.4 with

parameters -q 10, -b 15, and -i so that reads overlapping with an insertion were not included in the per base counts). We retained

only variants with at least 10 read counts covering reference and alternative alleles for this analysis. Then, to identify ASE events,

we performed a two-sided binomial test with a null probability of success 0.5 in a Bernoulli experiment. The resulting p-values

were adjusted using BH procedure, and ASE events were called significant if they reached FDR<0.05.

Indel variant analysis
Summary statistics of indel counts were measured according to the germline MAF files (above Methods) and restricted to a large set

of cancer related genes as previously described.
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Indel positioning was performed by mapping variants to the exons and labeling them according to position (First, Middle, or Last

exon). When only 1 or 2 exons made up the composition of a gene, then they were assigned first and last, and no did not receive a

middle label. Relative position of the mutation within the gene model was calculated for each gene based on the size of the exon as

cataloged by Ensembl v100.191 The Penultimate region next to the last exon junction (<50bp from the last exon junctions [EJC]) was

measured. This was performed for frameshift mutations and predicted inframe mutations as annotated in the germline MAF files (see

above STARMethods - germline variant calling and filtering fromWES). Again, using the Ensembl gene annotations, relative positions

to the last exon start-position was used to determine whether a mutation was assigned to the penultimate position. Kernel density

information was estimated and plotted to identify gene position differences of inframe and frameshift mutations (Figure 6B).

We also developed two simple algorithms to discover the impact of these germline variants on protein abundances. The first

method seeks to determine the impact of indels by looking at the upstream and downstream peptide-level abundances. Simply

stated, we used a t-test as the crux of the first analysis. Second, we sought to findmutations that had an effect on protein abundance

with respect to the RNA expression. Below we outline the implementation of a multi-omic LDA (moLDA) analysis to accomplish this

objective.

We used the following criteria to discover variants that had variable upstream and downstream consequences of indels. First, we

restricted our indel variants to those that had a predicted frameshift, splice-region, protein-altering designation according to VEP

annotations (see above STAR Methods - germline variant calling and filtering from WES). Next, we restricted our search to variants

that were observed in at least 20 samples. We ensured only variants with at least 6 measured peptides, up- and down-stream, were

included. We then split the data based on whether there was a significant difference between upstream peptide abundances to

downstream peptide abundances using a t-test. P-values and 95% confidence intervals for all indels and genes that met these

criteria are provided in Table S6.

The second strategy we implemented to identify the role of indels on protein variability was to leverage an assumed relationship

betweenRNA expression and protein abundance to find exampleswheremutations clearly associatedwith an expected relationship.

To achieve this objective we implemented a multi-omic linear discriminant analysis (LDA) to classify indel status based on RNA and

protein abundance. Briefly, LDA is a statistical method used for classifying or predicting the group membership of observations

based on a set of predictor variables. It aims to find a linear combination of predictors that maximally separates two differentiating

groups. Here the groups are defined as indel carriers and non-carriers and the predictors are protein abundance and RNA expres-

sion. First, we ensured thatmore than 30 samples had both RNA and protein abundancemeasurements for a given gene (in cis). Next,

we excluded all mutations that didn’t have at least 6 samples with the mutations and at least 6 samples without the mutations.

Following a data integration step to merge RNA expression with protein abundance we used the ‘lda‘ function as part of the

MASS R library to find linear combinations of protein and RNA that segregated based on mutation status (Figure 6E). Genes and mu-

tations were prioritized based on their singular value decomposition (SVD) scores which provide higher scores for improved sepa-

ration between predictors Table S6.

Identification of expression and protein quantitative trait loci (eQTLs and pQTLs)
We performed quantitative trait loci (QTL) mapping to identify common germline genetic variants that affect gene expression (eQTL)

and protein abundance (pQTL) in tumor and normal tissues utilizing the linear regression model in MatrixeQTL.192 For this purpose,

we used WGS germline SNPs with MAF R 5% and included gender and ten principal components as covariates to adjust for pop-

ulation stratification. We analyzed the data on each cancer and tissue separately. Specifically, we conducted the eQTL and pQTL

analyses for tumor and normal tissues of ccRCC, HNSCC, LSCC LUAD and PDAC for which both gene expression and protein abun-

dance data are available (except for eQTL analysis on normal tissue of PDAC patients due to the limited number of samples with

normal data). For the eQTL analysis, we utilized the FPKM normalized gene expression generated from the RNA-Seq data as dis-

cussed in the Pan-Cancer Data and Resource and Pan-Cancer Driver manuscripts,37,160 and further performed TPM conversion,

quantile normalization, and inverse normal transformation to remove technical noises and allow cross-sample comparisons. The

eQTL analysis included individuals for whom genotype and gene expression data were available and genes with TPM > 0.1 in at least

20% of samples (Table S7A). To eliminate the hidden determinants in the expression data, we additionally selected 15 PEER factors

as covariates using PEER software.193 The pQTL analysis included individuals for whomgenotype and protein abundancewere avail-

able and proteins with data in at least 20% of samples (Table S7A). We deemed QTLs at FDR % 1% as significant and considered

variants within 1Mbof a genes’ transcription start site as cis-QTLs. The significant eQTLs can be viewed at https://immuneregulation.

mssm.edu/.168 Furthermore, we performed overall survival analysis based on the expression of interesting genes (ERAP2, HLA-

DQB1 and PPIL3) in the ccRCC, HNSCC, LSCC, and LUAD CPTAC cohorts using the best cutoff with Kaplan-Meier Plotter.194

We also used Kaplan-Meier Plotter to assess the correlation between the expression and overall survival in the TCGA cohort.

Colocalization Analysis of eQTLs and pQTLs

We performed colocalization analysis to determine whether the leading variants among the cis- eQTLs and pQTLs are the same in

certain genes of interest using ‘coloc’ R package’s coloc.Abf function.195We applied the default values for the prior probabilities for a

SNP being associated with gene expression only, protein abundance only and with both.
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Polygenic Risk Scores and associations with protein abundance
Summary statistics, including risk allele, protective allele, odds ratio (OR) and annotated gene, were obtained for the largest genome-

wide association study available for each cancer type. This included ccRCC, PDAC, UCEC, GBM, LUAD, and LSCC for a total of 133

risk variants (Table S7H). The sameGWAS studywas used for LUAD and LSCC as this discovery study comprised a balancedmixture

of cases of both lung cancer subtypes. Polygenic risk scores (PRS) for each cancer typewere calculated using the score routine avail-

able in PLINK 2.0, weighting the allele dosage at each variant by the effect size.

In a first pass, we checked the discriminatory power of the PRS by integrating CPTAC and UKBB datasets. To control for popu-

lation structure, for these specific analyses we selected individuals of European ancestry in both datasets. For each cancer type, we

compared the PRSs of the corresponding subtype with: a) patients of other cancer types in CPTAC; b) individuals with cancer diag-

nosis in the UKBB; and c) individuals without cancer diagnosis in the UKBB. Three out of five tested cancers, namely PDAC, GBM,

and LSCC, showed significantly higher PRSs in the corresponding CPTAC patients compared to controls (Figure S7B). We focused

on these three cancers in subsequent analyses.

We identified tumor proteins that showed significant association with PRS using linear models. To avoid the effects of hidden vari-

ables inducing covariance in the protein abundance matrix, we first carried out a principal component analysis. Considering the rela-

tively large number of potential covariates to the sample size in our study, we performed a supervised selection of covariates to be

included in the linear models. We tested the correlation between the PRS aswell as the first ten principal components (PCs) of protein

abundance with relevant clinical, demographic and molecular variables, including: genetic ancestry (first 10 PCs), age at diagnosis,

sex, tumor purity, and smoking in the case of lung cancers. In the linear models we only included as covariates those showing sig-

nificant correlation with the corresponding PRS and/or proteomic PCs. Given our interest in germline variants (which are present in

the different tumor compartments), tumor purity was not included in any of the models despite significant correlation. We excluded

proteins with more than 20%ofmissing data across individuals. The effect of the PRSwas estimated for each protein using lm() func-

tion in R with the following designs:

lm
�
protein � PRS GMB + AncestryPC1 + AncestryPC2 + AncestryPC3 + AncestryPC5 + AncestryPC7 + AncestryPC10

+ Age + ProteinPC1 + ProteinPC2 + ProteinPC3 + ProteinPC4 + ProteinPC8
�

lm
�
protein � PRS LSCC + AncestryPC6 + ProteinPC1 + ProteinPC3 + ProteinPC7 + ProteinPC9

�

lm
�
protein � PRS PDAC + AncestryPC1 + AncestryPC2 + AncestryPC4 + AncestryPC5 + Age + ProteinPC2

+ ProteinPC3 + ProteinPC4 + ProteinPC5 + ProteinPC6
�

False discovery rates were estimated from the p-values using the fdrtool R package.196 STRINGdb173 R package (v11.5; https://

www.string-db.org) was used to infer the protein-protein interaction networks and compute enrichments for the number of interac-

tions among the top proteins associated with PRS. The database contains information for 19,566 proteins and over 2.9 million inter-

actions. Over 93% of queried proteins were present in the STRING dataset. We performed Gene Set Enrichment Analyses (GSEA)

analyses for Reactome pathways using the R package ReactomePA197 with 10,000 permutations and significance threshold of 0.05

with BH FDR adjustment. Disease free survival and overall survival plots were generated using survminer (v0.4.9; https://github.com/

kassambara/survminer) and survival (https://github.com/therneau/survival) R packages, stratifying the patients according to theme-

dian of the PRS scores.

ADDITIONAL RESOURCES

Comprehensive information about the CPTAC program, including program initiatives, investigators, and datasets, are available at the

CPTAC program website: https://proteomics.cancer.gov/programs/cptac.

For the Pan-Cancer proteogenomics collection papers, along with links to the data and supplementary materials associated with

these publications, please visit the Proteomic Data Commons (PDC) at https://pdc.cancer.gov/pdc/cptac-pancancer and the Can-

cer Research Data Commons at https://dataservice.datacommons.cancer.gov/#/data.
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Supplemental figures

(legend on next page)
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