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SUMMARY

We investigate the impact of germline variants oncancerpatients’ proteomes, encompassing1,064 individuals
across 10 cancer types.We introducedanapproach, ‘‘precisionpeptidomics,’’mapping337,469 codinggerm-
line variants onto peptides from patients’ mass spectrometry data, revealing their potential impact on post-
translational modifications, protein stability, allele-specific expression, and protein structure by leveraging
the relevant protein databases. We identified rare pathogenic and common germline variants in cancer genes
potentially affecting proteomic features, including variants altering protein abundance and structure and var-
iants in kinases (ERBB2 andMAP2K2) impactingphosphorylation. Precisionpeptidomeanalysis predictedde-
stabilizing events in signal-regulatory protein alpha (SIRPA) and glial fibrillary acid protein (GFAP), relevant to
immunomodulation and glioblastoma diagnostics, respectively. Genome-wide association studies identified
quantitative trait loci for gene expression and protein levels, spanning millions of SNPs and thousands of pro-
teins. Polygenic risk scores correlatedwith distal effects from risk variants. Our findings emphasize the contri-
bution of germline genetics to cancer heterogeneity and high-throughput precision peptidomics.

INTRODUCTION

The germline genome of each individual person has a unique

combination of millions of genetic variants that influence virtually

all biological processes throughout life, including cancer evolu-

tion. Many studies have demonstrated the critical importance

of germline genomics, from cancer risk assessment to the devel-

opment of tailored treatments.1 The earliest germline genomics
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studies of cancer-prone families identified highly penetrant risk

genes.2–6 These targeted-gene and linkage studies were fol-

lowed by array-based genome-wide association studies

(GWASs), which identified many common variants (minor allele

frequency [MAF] R 1%) associated with tissue-specific7,8 or

pan-cancer risk.9 While common risk variants typically have

small effect sizes when seen individually, they discriminate indi-

viduals at high risk when combined as polygenic risk scores

(PRSs).10,11 Furthermore, many common germline variants regu-

late proximal and distal expression of genes in specific tissues

and tumors with potentially additive effects.12,13

With advances in sequencing technologies, it has

become feasible to identify rare and low-frequency variants

(MAF < 1%) with moderate to high penetrance, associated

with tissue-specific14,15 or overall cancer risk,16–18 mecha-

nisms and pathways in tumor development,19 tumor immune

microenvironment,20,21 mutational burden,22,23 mutational sig-

natures,24,25 loss of heterozygosity (LOH),19 and clinical vari-

ables such as age of cancer onset16,22 and survival.26 Howev-

er, the impact of germline variants on the cancer proteome

and post-translational modification (PTM) landscapes is

poorly understood, specifically on oncogenic signaling path-

ways and their impact on cancer formation and evolution.

We analyzed the pan-cancer Clinical Proteomic Tumor Anal-

ysis Consortium (CPTAC) datasets from genomic, transcrip-

tomic, proteomic, acetylomic, and phosphoproteomic analytes

to generate precision proteogenomic profiles. These datasets

provide a unique resource to study the impact of germline

genomics on molecular oncogenic processes. Integrative

multi-omic analyses revealed new putative pathogenic

(P) rare germline variants in cancer predisposition genes

(CPGs). Furthermore, common variants in these genes were

associated with reduced levels of tumor suppressors in both

primary tumors and normal adjacent tissues (NATs). Addition-

ally, common germline variants at specific protein phosphory-

lation and acetylation sites influenced phosphorylation and

acetylation levels or resulted in the emergence of new PTM

sites. Our precision peptidomics data also identified allele-spe-

cific protein and PTM (ASP) effects and germline indels associ-

ated with protein stabilization, destabilization, or alternative

products. Finally, whole-genome sequencing (WGS) and quan-

titative trait loci (QTL) analyses identified common variants

affecting protein expression levels in normal and tumor tissues,

impacting cancer-associated pathways. Our results highlight

the power of integrative multi-omic approaches to illuminate

the impact of germline variants across cancer phenotypes,

revealing important biological insights into the role of germline

genomics. These findings suggest that precision proteoge-

nomics could inform patient risk stratification and prevention

and interception approaches.

RESULTS

Precision peptidomic and PTM analysis of coding
germline variants
CPTAC provides a proteogenomic dataset that includes com-

mon and rare germline variants across 10 cancer types. We pro-

cessed and analyzed proteogenomic, clinical, and demographic

data from 1,064 prospectively collected tumor and matching

blood samples, including: whole-exome sequencing (WES),

RNA sequencing (RNA-seq), proteome, and phosphoproteome

data from all 10 cancer types; WGS from seven cancer types;

and, acetylome data from six (Figure 1A). CPTAC also includes

proteogenomic data from paired NATs from eight cancer

types (n = 548/1,064 cases). All 1,064 matching blood samples

passed WES quality control criteria and were used for germ-

line variant calling, with average coverage ranging between

1053 and 3573 across target regions, and overall coverage of

253–2803 across a prioritized list of 160 CPGs (STARMethods;

Figures S1A and S1B; Table S1).
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A total of 185,724,997 germline variants were called fromWES

data (STAR Methods). Variants were filtered and annotated, re-

sulting in 27,104,152 germline variant calls (563,036 unique var-

iants) in exonic regions (�25,474 variants per sample). Individ-

uals of African genetic ancestry (AFR) showed the highest

average number of exonic germline variants per individual

(30,510), with the lowest being for those of European (EUR)

ancestry (25,205; Figure S1C). The germline exomes exhibited

an average transition-transversion (TiTv) ratio of 2.74%

and >99% concordance with dbSNP (Figure S1D). We derived

ancestral (ANC) status information for 27,104,152 exonic germ-

line variants (STAR Methods). Throughout this manuscript, we

refer to individual variants in terms of ANC or derived (DER) al-

leles instead of major and minor alleles, respectively, according

to their ANC status.

We also characterized the impact of non-coding variants on

gene expression and protein abundance in 779 CPTAC samples

from seven cancer types for which WGS data were available

(STARMethods). Given the low-pass nature of ourWGS dataset,

we phased and imputed the genotypes usingGLIMPSE27 using a

set of high-quality variants from 2,504 unrelated samples from

Phase 3 of the 1,000 Genomes Project, which were resequenced

to high coverage by the NewYork GenomeCenter (NYGC).28 For

quality control, variants called from WGS and WES were

compared for the seven cancer types (STAR Methods). Overall,

94.6% of variants overlapping between WES and WGS had the

same genotypes in the same samples (Figure S1E; Table S1D).

WGS data was also used to confirm genetic ancestry predic-

tions obtained from WES. Ancestry was first predicted from

WES using a random forest classifier for all individuals (STAR

Methods), while WGS was used to refine ancestry for 9 individ-

uals of Slavic origin in the glioblastoma (GBM), head and neck

squamous cell carcinoma (HNSCC), lung squamous cell carci-

noma (LSCC), pancreatic ductal adenocarcinoma (PDAC), and

A

B C

Figure 1. CPTAC dataset overview and precision peptidomics workflow

(A) The CPTAC cohort of 1,064 individuals of different genetic ancestries across 10 cancer types and available data types. Colors in top distribution represent

genetic ancestry: African (AFR); admixed American (AMR); East Asian (EAS); European (EUR); South Asian (SAS).

(B) Our precision peptidomics workflow, representing the implementation of the Spectrum Mill workflow on the LC-MS/MS datasets to yield peptide spectrum

matches (PSMs) that detected 18,599 germline variants in the proteome, phosphoproteome, and acetylome datasets.

(C) Overview of phosphorylation (upper) and acetylation (lower) sites affected by germline variants across cancer types based on the precision peptide data.

Variants occur nearby or directly at the site, with 78%of phosphosites and 84%of acetylsites having germline variants located at 10 or fewer amino acids from the

PTM site.

See also Figure S1.
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Figure 2. Impact of rare pathogenic and common germline variants on gene and protein expression

(A) Schematic of filtering and classification of germline variants. Purple boxes describe the prioritization procedure for rare variants; yellow boxes show pro-

cessing for common variants.

(B) (Left) Distribution of rare pathogenic/likely pathogenic (P/LP) variants across 10 cancer types. (Right) Distribution of variants previously reported in any of the

TCGA, gnomAD, and UKBB datasets (light blue) or novel to this study (dark blue).

(C) Gene expression (x axis) and protein abundance (y axis) quantiles of proteins fromP/LP variant carriers. Yellow and pink shading indicates variants with impact

on protein levels and gene expression, respectively; gray denotes variants with effect in both.

(legend continued on next page)
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uterine corpus endometrial carcinoma (UCEC) cohorts

which were misclassified in the WES-based predictions, but

correctly classified as EUR using WGS (Figure S1F; STAR

Methods).

Next, we combined proteomics and genomics datasets to

create protein sequence databases for each individual using

the proteogenomic integration tool Quantitative Integrated Li-

brary of Translated SNPs/Splicing (QUILTS)29 (STAR Methods).

From the total of 185,724,997 germline variants from WES, we

incorporated 337,469 unique patient-specific coding variants

that mapped to Gencode v34 reference protein sequences (Fig-

ure 1B). Using these databases for each cancer cohort, the pro-

teomics liquid chromatography-tandem mass spectrometry

(LC-MS/MS) datasets were searched with the Spectrum Mill

workflow (STAR Methods) to yield peptide spectrum matches

(PSMs) that matched peptides from the reference proteome,

germline variants, or somatic mutations. We detected peptides

for 18,599 unique coding germline variants in the proteome,

phosphoproteome, and acetylome, with the majority having

low frequencies at the cohort level. Among the variants detected,

1,828 were in more than one dataset, while the majority were in

only one: 12,330 in the proteome, 4,081 in the phosphopro-

teome, and 360 in the acetylome (Figure 1B). Scrutiny of the

location of these variants revealed 8,046 PTM sites (7,353 phos-

phosites and 693 acetylation sites) affected by germline variants,

150 of which were detected across all cancers and 5,459 de-

tected in a single cancer (Figure 1C). The pattern of high can-

cer-type specificity of PTM sites is consistent with our previous

study30 and suggests a role for PTMs in tissue/cell-specific regu-

lation and signaling.

Looking at the peptide-length distribution for reference and

alternative alleles (Figure S1G), there is a tendency for peptides

carrying the alternative allele to be longer than all reference pro-

teome-derived peptides, regardless of the specific proteomics

dataset (protein, phosphorylation, or acetylation). While the

higher minimum-score thresholds employed in the subset spe-

cific false discovery rate (ssFDR) filtering of the proteome data-

set to maintain suitable false discovery rate (FDR) levels will

bias against shorter peptides, a random variant in a protein is

more likely to occur in a peptide that spans a longer proportion

of that protein.

Proteogenomic modeling of rare pathogenic and
common germline variants
Germline variants associated with cancer likely have different P

mechanisms depending on allele frequency (AF): rare P variants

are oftentimes more damaging to protein function than common

variants.31,32 Here, we investigated the landscape of rare P and

common germline variants in the CPTAC cohort, leveraging

multi-omics information from tumor and matching NAT samples.

From 27,104,152 total exonic germline variants, a minority of

them were rare (1,528,083 variants; gnomAD AF % 0.05%), fol-

lowed by low frequency (993,176; 0.05% < gnomAD AF < 1%),

and common variants (24,582,893, gnomAD AF R 1%; Fig-

ure 2A). These proportions are similar to other large-scale data-

bases of population genomics, such as UK Biobank (UKBB).

Considering that rare P germline variants play important roles

in cancer susceptibility,16,18 we aimed to identify such events us-

ing CharGer33 (STARMethods; Figures 2A and S2). We identified

119 P and likely pathogenic (LP) variants across CPGs (Table S1)

affecting 115 individuals (10.8% of the cohort; Figure 2B). The

majority of P/LP variants likely represent loss-of-function events

(i.e., nonsense, frameshift, start-loss, and splice-site variants;

75%, n = 89), with the remaining being missense variants pre-

dicted to be deleterious (n = 30; Table S2). These variants were

also observed in other cohorts (The Cancer Genome Atlas

[TCGA],16 gnomAD, and UKBB) at extremely low frequencies

(mean gnomAD AF = 0.0001, and mean UKBB AF = 0.0002).

Furthermore, 34 variants (29%) were private to the CPTAC

cohort (Figure 2B). We also observed that carriers were younger

at diagnosis compared with non-carriers for the breast cancer

(BRCA), colorectal adenocarcinoma (COAD), and clear cell renal

cell carcinoma (ccRCC) cohorts (Figure S2A).

To evaluate the impact of germline variants in a somatic

context, we investigated LOH events using allele fractions from

tumor-normal data to identify variants positively selected in the

tumor based on the two-hit hypothesis17,34,35 (STAR Methods).

From 119 P/LP variants, we observed 21 (17.6%) and 11

(9.2%) variants undergoing significant (FDR% 0.05) and sugges-

tive (0.05 < FDR % 0.15) LOH in the tumor, respectively

(Figure S2C). For 15 of 21 (71%) significant LOH, we observed

deletion of the respective gene detected by the tool Genomic

Identification of Significant Targets in Cancer, version 2

(GISTIC2).36 Also, 6 (5%) of 119 P/LP variants co-occurred

with non-silent somatic mutations in the same gene.

Next, we explored the molecular consequences of these 119

P/LP variants using protein and RNA expression data, focusing

on 65 P/LP variants for which both RNA and protein levels

were available. Consistent with a loss-of-function phenotype,

P/LP variant carriers displayed lower RNA expression and pro-

tein levels (within-cancer-type quantile means of 0.36 and

0.29, respectively, compared with 0.5 for the entire cohort;

Figures 2C and S2D). This was observed for variants affecting

members of the mismatch repair (MMR) pathway (PMS2,

MSH2, andMSH6) associatedwith lowRNA expression and pro-

tein levels (expression quantiles < 0.25). We observed that 4 of 5

carriers of P/LP variants in those genes (MSH2 L277*, MSH6

E744fs, MSH2 Q518*, and PMS2 I611fs) were also identified as

microsatellite instability (MSI)-high samples (Table S1 from Li

et al.37), consistent with the fact that carriers of P/LP variants

(D) Effects of common germline variants in cancer genes in their protein abundance (y axis) and RNA expression (x axis). Effect is calculated as the slope in the

regression model. Dot size reflects the �log10 of the FDR adjusted p values from the regression model.

(E) Protein levels (y axis) in NAT or tumor samples for ATM, SDHA, and ERCC2 according to genotype (x axis). p values from pairwise Wilcoxon tests between

genotype groups are provided, and data are represented as median and interquartile range.

(F) Mapping of the ERCC2 K751 position on the PDB: 6RO4. Blue represents the residue, gray denotes ERCC2, pink represents ERCC3, orange highlights the

DNA molecule.

See also Figure S2.
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Figure 3. Impact of missense germline variants on PTM sites based on linear distances

(A) Depiction of how missense variants may impact PTM sites based on linear distances: direct hit (colocalizes with PTM site); proximal (within 5 amino acids); or

distal (located beyond 5 amino acids). Created in Biorender.

(B) Direct hits are classified based on their consequence: loss, change, and gain. Created in Biorender.

(C) Distribution of direct, proximal, and distal events detected in CPTAC, beside a bar plot summarizing the distribution of direct hits across the top 30 cancer-

related genes.

(D) Significance (y axis) and effect (x axis) of direct-hit events on global protein levels in NATs (left) and tumor samples (right) from linear model results. Points are

colored by variant consequence and shaped according to PTM type. Effect (x axis) is calculated as the slope in the regression model, and y axis reflects the

�log10 of the FDR adjusted p values from model.

(E) Significance (y axis) and effect (x axis) of proximal or distal variants in cancer-related genes on phosphorylation and acetylation levels of their corresponding

PTM sites in NATs (left) and tumors (right). (Top and bottom) Results from rare/low frequency (gnomAD AF < 1%) and common variants (gnomAD AF R 1%),

respectively. Colors represent variant distance to the PTM sites; shapes represent PTM type; and sizes represent the frequency of the event in the CPTAC cohort

(pan-cancer level). Only events for which protein abundance differences were not observed are labeled. Events inHLA-A andHLA-Bwere removed from common

(legend continued on next page)
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in core MMR pathway genes tend to develop an MSI cancer

phenotype.38 Most variants had comparable quantiles of both

gene and protein expression (rho = 0.49, p = 3.08 3 10�5; Fig-

ure 2C). Interestingly, we also observed outliers, including

TP53 M1I, ERCC2 A717G, and ATM L1283fs, which were asso-

ciated with high RNA expression but low protein abundance of

the respective genes, highlighting the importance of proteomics

to assess the functional impact of variants.

Next, we explored the potential effects of common germline

variants (gnomADAFR 1%) in our list of 160 CPGs and 299 can-

cer driver genes37,39 (Figure 2D). We observed variants in ATM,

SDHA, andERCC2with no detectable effect on RNA expression,

but lower protein levels in carriers of the DER alleles in tumor and

matched NAT samples (Figure 2E). ERCC2 K751Q has been

associated with lower DNA-repair activity in vitro and better out-

comes in patients treated with chemotherapy,40,41 consistent

with the DER allele lowering DNA-repair efficiency. A structural

alignment of the AlphaFold2 model for ERCC2 (Protein Data

Bank [PDB]: 6RO4) suggests that K751 could sit at the binding

interface between ERCC2 and ERCC3 (Figure 2F). This, together

with previous in vitro and clinical data, and lower protein levels,

suggests that the DER allele may damage the stability of the

complex. Further experiments are needed to validate this hy-

pothesis. In conclusion, the overall lower protein levels for core

proteins of the DNA-repair machinery suggest that, even if these

are common variants and with no detectable effects at the RNA

level, they could potentially have important clinical impacts.

Direct, proximal, and distal effects of germline variants
on PTM sites
Germline variants may mediate cancer risk through dysregula-

tion of signaling pathways.42,43 For example, variants might

change a PTM site to abrogate its ability to become phosphory-

lated or acetylated44–48 or alter the motifs that make it recogniz-

able by enzymes, making it more or less likely to become modi-

fied. We explored the impact of rare/low frequency (gnomAD

AF < 1%) and common (gnomAD AF R 1%) missense variants

co-localizing, proximal (within 5 amino acids), or distal (beyond

5 amino acids) to PTM sites at the linear distance (Figure 3A).

For germline variants directly overlapping a PTM site, three sce-

narios were assessed: (1) loss of a PTM site; (2) creation of a new

site; or, in the case of phosphorylations, (3) change of the sub-

strate, e.g., serine to threonine (Figure 3B). To focus on pro-

tein-coding variants, we evaluated missense germline variants

from WES to identify reference peptides in the (phopsho/

acetyl)proteomics datasets with the matching amino acids for

both alleles across the entire cohort (STAR Methods). We

observed 532,142 proximal, distal, and direct-hit events

involving single phosphorylation sites and 42,014 events

involving acetylation sites. Of these, 1,706 variants directly over-

lapped a site, 4,660 were proximal, and 567,790 were distal to a

site on the same protein (Figure 3C; Table S3). Most PTM-related

genetic variants (92.6%) were associated with phosphorylation

rather than acetylation sites, reflecting the higher abundance of

phosphorylation PTMs in our dataset (Figures 1A and 3C).

Regarding variants overlapping a PTM site, PTM losses were

the most frequent events: 1,578 losses detected across all pro-

teins, compared to 120 gain and 8 changes (Figure 3C). Of these,

we observe 115 loss and 5 gain events across the lists of 160

CPGs (Table S1), 299 cancer driver genes,37,39 and 624

other cancer genes17 including ATRX, BRCA1, TP53BP1, and

PARP4 (Figure 3C; Table S3). Samples with variants affecting

PTMs in these proteins displayed differences in protein abun-

dance compared with those with reference alleles (STAR

Methods). Specifically, 16 proteins with variants located at a

PTM site exhibited significant dysregulation in NATs, of which

14 were also observed in tumors (generalized linear model

[GLM] FDR% 0.05; Figure 3D; Table S3). For example, we noted

a small but statistically significant increase in the level of DEP

containing MTOR interacting protein (DEPTOR) in the presence

of the S389N phosphosite loss allele. DEPTOR is associated

with suppression of the mechanistic target of rapamycyin kinase

(mTOR) complexes 1/2 (mTORC1/2),49 and the S389N variant

(rs4871827, gnomAD AF = 0.33) is at the interface between

DEPTOR and mTOR.50 To understand whether this variant has

broader mTOR pathway effects, we tested for changes in pro-

teins or phosphoproteins in pathway members between variant

carriers and non-carriers (STAR Methods), as even modest

changes in protein abundance may elicit downstream effects

(Table S3). We found a slight decrease in MAP2K2 T25 phos-

phorylation levels in HNSCC (GLM FDR = 0.0163; Wilcoxon

FDR= 0.00097 between non-carriers and heterozygous (HET) in-

dividuals; Figure S3A). In PDAC, EIF4EBP1 showed decreased

phosphorylation at S83/S101 and T36/T37 (GLM FDR = 0.02

and 0.027, respectively). Moreover, patients homozygous for

the DER allele of DEPTOR S389N showed the lowest phosphor-

ylation levels at both EIF4EBP1 sites (Wilcoxon FDR = 0.018 and

0.036, respectively; Figures S3B and S3C; Table S3). The T37

site in EIF4EBP1 is involved in hyperphosphorylation-dependent

disruption of eIF4E binding.51 Beyond DEPTOR, several other

PTM-overlapping variants showed associations with phosphor-

ylation levels of pathway members, including ERBB2 P1170A

on PAK1 S220s/T225t phosphorylation in the pan-cancer cohort

(GLM FDR = 0.043; Figure S3D), HLA-B V69A on HSP90AA1

S763s phosphorylation in BRCA (GLM FDR = 0.005; Figure S3E),

and CASP8 D344H on SEPTIN4 S605s phosphorylation in GBM

(GLM FDR = 0.048; Figure S3F).

Next, we quantified the association of proximal or distal vari-

ants with phosphorylation/acetylation abundance differences

on reference peptides at the pan-cancer level (STAR Methods).

For rare/low-frequency variants, to increase statistical power,

we collapsed all individuals harboring a proximal or distal variant

into a single variable at the gene level (STAR Methods). We

identified 46 variants associated with phosphorylation and

variant results (bottom) (see Table S3D for complete list of tested events and Table S3E for protein abundance differences results). Effect (x axis) is calculated as

the slope in the regression model, and y axis reflects the �log10 of the FDR adjusted p values from the model.

(F) PTM levels according to patient genotype status for variants proximal (top) and distal (bottom) to the sites. FDR adjusted p values from pairwiseWilcoxon tests

between genotype groups are provided, and data are represented as median and interquartile range.

See also Figure S3.
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Figure 4. Spatially interacting missense germline variants, somatic mutations, and PTM sites

(A) Depiction of howmissense germline variants and somatic mutations may interact with PTM sites based on spatial distances, showing an overview of HotPho

analyses, which map input mutations and PTM sites onto protein structures. Created in Biorender.

(B) HotPho pipeline. Created in Biorender.

(C) (Left) Number of intramolecular hybrid clusters in cancer-related proteins detected in AFDB and PDB (inner). (Right) Number of germline variants and somatic

mutations in each hybrid cluster that are directly overlapping a PTM site in the same cluster at a linear distance (direct), within 5 amino acids (proximal), or beyond

5 amino acids (distal).

(D) Protein level differences in samples involved in hybrid clusters detected in AlphaFoldDB structures vs. not. Dots represent a cluster, where color depicts its

type based on involved events. AFDB cluster ID is shown beside protein names. Effect (x axis) is calculated as the slope in the regression model, and y axis

reflects the �log10 of the FDR adjusted p values from the model.

(legend continued on next page)
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acetylation changes at proximal or distal sites, of which 9 are in

cancer genes (Figure 3E; Table S3D), including MAP2K2 P298L

(rs200371894, gnomAD AF = 9.2e�4) associated with higher

phosphorylation at the S295 phosphosite in tumor and NATs

(Figures 3E and 3F).

For common germline variants, we then analyzed each variant

individually, detecting 815 common proximal or distal variants

associated with phosphorylation and acetylation-level differ-

ences in carriers vs. non-carriers, with 78 events in cancer genes

(Figure 3E; Table S3D). One notable proximal event is variant

ATRX E929Q (rs3088074, gnomAD AF = 0.3747), which is asso-

ciated with lower phosphorylation levels at the S925 site in both

tumor and NAT samples at the pan-cancer level (Figure 3F). This

event was also significant in ccRCC, GBM, PDAC, and UCEC

(Table S3D). This variant was recently reported as the most

frequent mutation in a Lebanese GBM cohort.52 A similar effect

was observed for the T1166 phosphosite in ERBB2 proximal to

the P1170A variant (rs1058808, gnomAD AF = 0.60; Figure 3F).

This variant has had conflicting interpretations, with some

studies reporting a lack of association with increased cancer

risk,53–58 but others reporting associations with increased

expression of HER2 protein in BRCA,59 risk of lung cancer in a

Korean population,60 gastric cancers,61,62 epithelial ovarian can-

cer,63 and of cervical cancer.64

Focusing on distal events in cancer genes, we observe the

MGMT I174V variant associated with decreased phosphoryla-

tion at S216 (Figure 3F). MGMT plays a role in DNA damage

repair. Epigenetic alterations of this gene are reported in

GBM, colorectal, gastric cancers,65 and its loss is associated

with increased melanoma risk.66 This variant, however, has

been suggested as benign in melanoma.67 Additionally, the

role of S216 phosphosite is unknown. The degree of S315

phosphorylation in CASP8 exhibited a similar pattern relative

to the distal D344H variant (rs1045485, gnomAD AF = 0.091;

Figure 3F), which has been associated with a reduced risk

for breast and prostate cancer.68,69 In contrast, patients with

the SBDS I212T variant (rs79344818, gnomAD AF = 0.025)

demonstrated higher phosphorylation at S233 compared

with those with the ANC allele (Figure 3F). No significant acet-

ylation differences due to proximal or distal events were

observed in cancer genes. While no global protein abundance

changes were associated with PTM-proximal events in can-

cer-related genes, 52 distal events indicated a significant pro-

tein abundance disparity including variant D1853N in ATM,

variants Y629F and V657I in SDHA, and P187S in NQO1

(Table S3E).

Finally, we identified several cancer-related pathways en-

riched in proteins harboring PTM-proximal events (STAR

Methods), including oxidative phosphorylation and p53 path-

ways (Figure S3G), DNA damage-repair pathways, and path-

ways specific to GBM, endometrial cancer, BRCA, and head

and neck cancer (Figure S3H). For PTM-distal events, we see

similar enrichment for DNA damage-repair pathways, Wnt

beta-catenin, and the phosphatidylinositol 3-kinase (PI3K)/Akt/

mTOR signaling70 (Figure S3H).

Our findings suggest that germline variants are not solely

associated with protein levels but may mediate PTM on partic-

ular protein residues due to their changes in amino acid context,

affecting oncogenic signaling pathways.

Spatially interacting germline variants, somatic
mutations, and PTM sites
Protein structures provide insights into the functional conse-

quences of genetic changes, as variants in close proximity in a

protein’s three-dimensional (3D) space tend to be associated

with similar phenotypes.71–74 Structure prediction algorithms,

such as AlphaFold275,76 provide 3D models of all human pro-

teins, allowing us to explore the clustering of somatic mutations,

germline variants, and PTM sites in 3D space across the entire

proteome.

We used HotSpot3D72 and HotPho73 to evaluate co-clustering

events using 7,780 experimental human protein structures from

the Research Collaboratory for Structural Bioinformatics Protein

Data Bank (RCSB PDB)77,78 and 19,966 human protein models

from the AlphaFold Protein Structure Database (AFDB)

v4,75,76,79 as well as a total of 123,676 phosphosites, 23,648 ace-

tylsites, 183,503 missense somatic mutations, and 11,962,341

missense germline variants (Figure 4A; STAR Methods). We

focused on intramolecular clusters among the top 5% cluster

closeness (Cc) score, a metric that evaluates the enrichment in

studied features (i.e., genetic variants and PTM sites). We found

210 hybrid, 509 mutation-only, and 111 site-only clusters from

PDB and 978 hybrid, 3,126 mutation-only, and 731 site-only

clusters from AFDB (Figures 4B and S4A; Table S4; STAR

Methods).

Overall, results from PDB and AFDB structures are in agree-

ment (Figures S4B and S4C), with 56.9% of clusters identified

in PDB also detected in AFDB (9.1% of all clusters detected in

AFDB and PDB combined). Given the larger number of AFDB

structures, more clusters were observed for that database. The

proteins with the most clusters are highly enriched in human

leukocyte antigen (HLA) molecules in AFDB and PDB (HLA-

DRB5, HLA-DRB1, HLA-A, HLA-B, HLA-DQA1, and HLA-C; Fig-

ure S4B), likely due to the high germline and somatic variability of

HLA genes.80–83 We observed an enrichment of clusters in can-

cer-related genes (Table S4) at the top 5% Cc score compared

with other genes (Figure S4A, bottom). Most hybrid clusters in

these proteins involve at least one missense germline variant

and phosphosite, with a few involving acetylsites (Figure 4C),

including clusters in TP53, RET, BRCA1, PMS2, POLE, SDHA,

IL7R, RBMX, ERBB2, andCTNNB1. CTNNB1 has a cluster asso-

ciated with endometrial carcinoma involving two phosphosites

(S33 andS29) and a few recurrent somaticmutations at positions

D32 and G34.84

(E) AlphaFoldDB protein structures depicting detected clusters, rendered with Pymol. From left to right: TP53 cluster 73,946 (AFDB: AF-P04637-F1); NQO1

cluster 46,877 (AFDB: AF-P15559-F1); SDHA cluster 62,658 (AFDB: AF-P31040-F1). Green spheres represent acetylsites; blue represents phosphosites; red

toned spheres represent somatic mutations and germline variants. Variant and site annotations are depicted, followed by the number of individuals with events at

that position (x1 notes one individual).

See also Figure S4.
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Figure 5. Allele-specific effects on gene, protein, and PTM expression

(A) Schematic of data acquisition from HET patients for allele-specific expression (ASE) analyses (GT, genotype; WES, whole-exome sequencing; MS, mass

spectrometry).

(B) Top ASE events in tumor and NAT samples across 10 cohorts with frequency >50%. Dot color denotes frequency, while size represents the number of ASE

events in the respective cohort. The y axis represents data type (RNA or proteomics), and in the case of RNA, the cancer and sample type (tumor or NAT) from

which the results were derived.

(legend continued on next page)
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Most hybrid clusters involve germline variants linearly proximal

to PTM sites. However, our analysis also identified variants distal

from the sites, but close in the 3D protein structure (Figure 4C).

We found 155 germline variants overlapping PTM sites within

clusters, 1,136 proximal variants, and 458 co-clustered with

distal sites. Of these, a few distal examples are found in the

top clusters of cancer proteins (Figures 4C and S4D; Table S4),

including a TP53 cluster (Figure 4E) involving the K132 acetylsite,

some somatic mutations (K132N, K132R) at this site that lead to

its loss, and distal germline variants like the rare P R273H that af-

fects TP53-DNA binding, promoting cancer cell survival.85–92

This gain-of-function variant also increases TP53 levels in sam-

ples with co-clustering events at the pan-cancer level (FDR =

8.75e�22; Figure 4D; Table S4C). Higher TP53 levels are also

observed in BRCA, COAD, and GBM samples with variants in

this cluster (Figure S4E; Table S4D).

Another example is a NQO1 cluster (Figure 4E) involving a

common P germline variant (P187S), and the acetylsite K271.

NQO1 is involved in detoxification of carcinogens whose dysre-

gulation is associated with many cancers.93–103 The presence

of P187S can significantly reduce NQO1 activity by lowering

flavin adenin dinucleotide (FAD) affinity and impairing protein

stability, increasing cancer risk.104,105 NQO1 stability is linked

to its C-terminal domain, where K271 is located. P187S acceler-

ates ubiquitin-dependent proteasomal degradation driven by

K271 and other sites, affecting both polymorphic and wild-type

forms of the protein.106–111 K271 acetylation also disrupts FAD

binding,112–114 reducing protein activity. Our analyses revealed

lower NQO1 abundance in co-clustering samples at the pan-

cancer level (FDR = 6.73e�35; Figure 4D), and in samples with

variants in this cluster compared to non-carriers in BRCA,

ccRCC, COAD, GBM, HNSCC, lung adenocarcinoma (LUAD),

and PDAC (Figure S4E; Table S4D).

We also identify a SDHA cluster involving the germline variant

V657I and proximal to the phosphosite T656 (Figure 4E).

Although V657I is classified as benign in ClinVar, studies suggest

its potential pathogenicity in pheochromocytoma/paragan-

glioma, renal cell carcinoma, and gastrointestinal tumors.115–117

Supporting this, we observed significantly lower SDHA levels

among co-clustered samples at the pan-cancer level (Figures 4D

and S4E; Table S4C). We also observe a cluster involving a

germline variant overlapping the S389 phosphosite of DEPTOR

(S389N) also detected in our analyses of direct-hit events

(Figures 3D and S4F). This cluster prioritizes a nearby phospho-

site (Y385) and somatic mutations (R386W, V388M, and L393V)

and seems to be associated with a small but statistically signifi-

cant increase of DEPTOR protein levels in co-clustering samples

at the pan-cancer level (Figure 4D; Table S4C). Functional

studies would be needed to further investigate this variant’s

impact. Collectively, our 3D spatial clustering analyses can

help prioritize variants and PTM sites that may influence cancer

susceptibility.

ASP effects revealed by precision peptidomics
Genetic variants can lead to preferential expression of one allele,

a phenomenon called allele-specific expression (ASE)118,119

associated with cancer and other diseases.120–122 Although

allele-specific effects on proteins have been explored,123–126

ASE of germline variants has not been extensively explored us-

ing proteomics at the pan-cancer level. We evaluated ASP

expression, focusing on HET carriers of variants in cancer genes

(Figure 5A).

We used a classic approach for ASE detection by calculating

read counts for the ANC and DER alleles in tumor and NAT RNA

expression data of all HET individuals in CPTAC,119,122 focusing

on variants in 624 cancer-related genes17 detected in the

proteome, phosphoproteome, or acetylome datasets (STAR

Methods; Figure 1B). We detected 17,971 ASE instances in tu-

mor and 4,057 in NAT samples (FDR < 0.05; Table S5) affecting

184 and 101 genes, respectively (Figure 5B). To evaluate the ASE

impact on the proteome, we compared protein and PTM abun-

dances between samples with preference for the ANC vs. the

DER allele for each ASE event. From 45 ASE instances frequently

observed across samples in different cancer types (Figure 5B),

23 (51%) showed significant and suggestive differences

(FDR < 0.2) in protein and/or PTM abundances (Figures S5A

and S5B; Table S5E). To explore the impact of ASE of germline

variants on protein interactions, we compared protein and

PTM abundances of interacting partners of proteins with ASE

germline variants between samples with preference for the

ANC vs. the DER allele. In total, we observed 7 PTMs and 7 pro-

teins associated with those ASE events (FDR < 0.2; Table S5).

We observed a higher number of tumor ASE events compared

with NAT, consistent with previous findings.121,127 The higher

prevalence of ASE in tumors (after accounting for having fewer

NAT samples; Figure S5C) is likely due to genetic factors,

including copy-number variations (CNVs), while NAT ASEs

should be enriched with epigenetically regulated events.128 Tu-

mor-only ASE events included variants in genes associated

with DNA damage response and cell cycle, such as AURKB

T299M, MLH1 I219V, variants in PARP4, and the BRIP1 S919P

variant in BRCA and ovarian high-grade serous carcinoma

(HGSC) patients. BRIP1 is involved in the homologous recombi-

nation pathway, which is frequently altered in these two

cancers.129

Common germline variants can also lead to ASE. This is

the case of D139E in CHD4 (rs1639122, gnomAD AF = 0.4),

a chromatin-remodeling enzyme that regulates DNA damage

(C–E) Evaluation of ASE on gene, protein, and PTM expression. (Left) Read counts for ancestral (ANC) and derived (DER) alleles of CHD4 D139E in tumor (C) and

NAT (D), and TP53 P72R in tumor (E). Dots represent individual samples, and color denotes significant (FDR% 0.05) preference for the ANC (red) or DER (purple)

allele. Samples with high preference for the ANC allele of CHD4 D139E are colored in dark red. (Right) Peptides for: DER allele CHD4 E139 (phosphopeptide

sequence: RKEEEEEEDDDDDsKEPK), ANC allele CHD4 D139 (phosphopeptide sequence: RKEEEEEDDDDDDsKEPK), and DER allele TP53 R72 (peptide

sequences: MPEAAPR and (R)VAPAPAAPTPAAPAPAPSWPLSSSVPSQK, that are possible only with R72).

(E) (Bottom right) RNA-seq VAFs for TP53 R72 allele.

(F) Distribution of CNVs affecting respective genes across samples with ASE.

See also Figure S5.
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response130 (Figures 5C and 5D, left; Figures S5D–S5F). D139E

affects the high mobility group (HMG) box-like-domain of CHD4

essential for DNA binding and nucleosome remodeling.131 To

dissect its ASP effects, we subdivided HET individuals into

groups with preference for either the ANC or DER alleles, and

those showing no allele preference based on gene expression

data (STAR Methods). We defined individuals with %10 reads

covering the DER allele as the group with high preference for

the ANCallele (Figures 5C and 5D, dark red). Our results revealed

that CHD4 S145 peptides containing the DER allele are more

abundant in tumor samples with preference for the DER allele

compared with samples with preference for the ANC allele at

the phosphosite level (|log2(fold change)| = 1.36, Wilcoxon rank

sum test p = 0.001; Figures 5C and 5D, right; Table S5E). An

even higher difference was observed between samples with

high preference for the ANC allele vs. the DER allele (|log2(fold

change)| = 4.23, Wilcoxon rank sum test p = 1.91 3 10�10;

Figures 5C and 5D, right).

In the tumor-only ASEs, we observed the TP53 P72R variant

(rs1042522, gnomAD AF = 0.67; Figure 5E), widely studied in

cancer,132–134 and shown to impact apoptosis, cell cycle arrest,

and DNA damage repair.134,135 We identified this variant at pep-

tide and phosphosite levels (Figure 5B) and noticed frequent ASE

for either ANC (33%) or DER (20%) alleles. We also identified

several phosphosites of TP53 targets that showed significant

(FDR < 0.05) and suggestive (FDR < 0.1) differences between

samples with preference for the P72 allele vs. the R72

allele, including MAP4 N86nS94sT101t, WRAP53 S54s, and

ARFGEF2 S227s (Figure S5G; Table S5F). Finally, we evaluated

how many ASEs were driven by CNV events in our cohort

(Figures S5H and S5I) and observed that many samples with

ASE were also harboring a CNV in the same gene (Figure 5F),

which could explain a higher fraction of ASE events in tumors

compared with NAT samples, as previously reported.136 Our

findings highlight the power of precision proteomics in evalu-

ating the impacts of allele-specific events.

The influence of germline indels on protein stability
Precision proteogenomics enables the detection of protein-de-

stabilizing and -stabilizing germline insertions and deletions (in-

dels), an unexplored germline effect in cancer. We identified

103,428 ‘‘high-impact’’ germline indels in CPTAC (STAR

Methods), with the most frequent indels occurring in non-cancer

genes (e.g., SIGLEC12, ZNF598, ZAN, and OR2T35; Figure 6A).

Among cancer genes, we observed a high fraction of indels in

KMT2C, a methyltransferase implicated in many cancer types,

oftentimes through somatic truncating single-nucleotide variants

(SNVs) or indels137 (Figure 6A). All KMT2C indels were HET, sug-

gesting haploinsufficiency. Other frequent indels in cancer-

related genes occurred in SETBP1, TGIF1, and CBWD3, consis-

tent with known germline indel effects.138,139

Premature stop codons >50 base pairs (bps) upstream of the

last exon junction (EJ) likely trigger higher nonsense mediated

decay (NMD) via EJ complex (EJC) than those within 50 bps of

the last EJ.140–142 Consistent with thismodel, we observed a dra-

matic shift in inframe and frameshift mutation abundance de-

pending on the distance to the last EJ across cancer types

(Figures 6B and S6). Interestingly, no cancer-related genes ex-

hibited frameshift events within the 50 bps before the last EJ,

whereas 34 cancer-related genes had inframe indels within the

last 50 bps of the last EJ. Among the latter, NCOR2 (30 samples)

had frequent inframe deletions. NCOR2, a predicted tumor sup-

pressor gene, recruits HDAC3 to promote histone deacetylation.

The absence of germline frameshift events in cancer genes near

the penultimate EJC suggests a low tolerance of these variants in

cancer genes.

To assess intra-genetic variability at the peptide level, we

developed methods to detect proteins with variable stability.

We compared aggregated peptide expression upstream and

downstream of common indels, identifying 45 proteins with sig-

nificant differences in peptide abundances at indel sites (STAR

Methods; Table S6). For instance, indel rs139878822 in the

signal regulatory protein alpha (SIRPA; encoding the CD47 re-

ceptor) altered peptide abundance in LSCC and GBM

(Figures 6C and 6D). Of note, the ELIYNQK peptide, upstream

of the indel, has a 100% protein sequence identity to SIRPb

and SIRPg likely contributing to the higher upstream abun-

dances for that single peptide. SIRPa is involved in the negative

regulation of the mitogen-activated protein kinase (MAPK)

cascade143 and CD47-mediated ‘‘don’t eat me’’ immune

signaling cascade.144 Our results suggest that carriers of indel

rs139878822 likely acquire an alternative start site that truncates

SIRPA’s first immunoglobulin domain.

Using a multi-omic linear discriminant analysis (moLDA), we

discovered mutations associated with strong deviations from

the expected relationships between protein abundance and

RNA expression (STAR Methods). This revealed 45 genes with

exceptional moLDA scores across cancer types, e.g., CPNE1,

Figure 6. Impact of germline insertion and deletion variants on protein expression

(A) Total number of indels per gene, highlighting the most frequently mutated cancer genes (main plot) and the top 21 genes from all possible genes (inner plot).

Blue and orange colors indicate homozygous (HOM) and heterozygous (HET) mutation counts, respectively.

(B) Two density plot lines illustrate the relative location (according to exon) and abundance of germline indels across all genes. The penultimate exon junction (EJ)

plots indicate exonic mutations in the second-to-last exon relative to the last EJs: >50 and <50 bps, respectively. Annotated inframe indels are indicated in black,

and frameshift indels are shown in red.

(C) Lolliplot and faceted peptide comparisons of samples carrying the SIRPA indel compared with non-carriers. Boxplots to the left and right of the lolliplot

correspond to peptides upstream and downstream of the mutations, respectively. Data are represented as median and interquartile range. Only LSCC samples

are displayed.

(D) Similar to (C) but highlights mutations in GBM patients.

(E) Gene expression and protein abundance for each sample in the GBM cohort. Dots represent samples colored based on indel mutation status. Margins display

data density for protein abundance and gene expression.

(F) Similar to (C) and (D) but for GFAP indels in the GBM cohort.

See also Figure S6.
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OAS1, CARD8, CASP7, and ITIH1 (Figure S6). We highlight a

novel association between a common variant in the 30UTR and

protein expression of the glial fibrillary acid protein (GFAP) in

GBM tumors (Figure 6E, top x axis). No association is detectable

between indel carriers and non-carriers at RNA expression level,

but there is a drastic shift in protein abundance (Figure 6E, right y

axis, Welch’s t test p value = 1.323 3 10�8). This association

found in the UTR of GFAP has not been previously reported,

probably because of its lack of influence on RNA levels and

scarce proteomics data in this disease. GFAP is a critical GBM

biomarker,145 and a ‘‘promising therapeutic target’’146. A break-

down of carriers and non-carriers at the peptide level indicated

an increase in the abundance and stability of the entire protein

(Figure 6F). Furthermore, miRWalk,147 an miRNA binding predic-

tion tool, suggests strong binding of miR-137 at this indel site.

Collectively, these analyses underscore the utility of multi-omic

integration in linking genomic, expression, and proteomic

changes to cancer mechanisms.

Omics-wide association of common germline variants
and ANC variants with proteomics impacts
Most germline variations occur in non-coding regions of the

genome, which regulate cellular processes. To characterize their

regulatory impact on gene expression and protein abundance,

we performed QTL analyses. Germline variant calling was per-

formed on blood-derived WGS samples followed by imputation

using the NYGC 1,000 Genomes Project genome.28 QTLs

affecting transcript (eQTL) and protein (pQTL) abundance were

mapped in NAT and tumors across ccRCC, HNSCC, LSCC,

LUAD, and PDAC (Figures 7A and 7B; Table S7A). We observed

that the expression levels of �5% and �10% of the total tested

genes (eGenes) and the abundance levels of �4% and �5% to-

tal tested proteins (pProteins) were associated with WGS germ-

line variants in tumor and NAT, respectively (Table S7). Further-

more, �12% and 15% of pQTLs were also eQTLs in tumor and

NAT, respectively.

Pan-cancer analysis identified 237 eGenes and 47 pProteins

that were shared across all NATs and cancers we studied, sug-

gesting cross-tissue QTLs (Figure 7C). Interestingly, ERAP2,

HLA-DQB1, and PPIL3 were under germline genetic control

across all NATs and cancers at both gene expression and protein

levels. To determine whether the causal genetic variant was the

same for transcript expression and protein abundance for each

of these three genes, we conducted a Bayesian test for colocal-

ization of all eQTL-pQTL cis-pairs. We discovered that for

ERAP2 (Figure 7D), the same variant drives both eQTLs and

pQTLs (Figure 7E). We also show the effect of the lowest p value

cis-SNP (rs2927608) on ERAP2 in Figure 7D. Similarly, in HLA-

DQB1 and PPIL3, we observed that eQTLs and pQTLs shared

the same causal variants in most of the NAT and tumor tissues

(Table S7F). As a positive control, we compared the cis-eQTLs

of NAT and tumor tissues of LSCC and LUAD with normal lung

eQTL data from the Genotype-Tissue Expression (GTEx) Con-

sortium (Figure 7F; Table S7G), showing that �60% of eQTLs

(�65% eGenes) and �50% of eQTLs (�60% eGenes) in NAT

and tumors, respectively, were also identified in GTEx at 1%

FDR. Furthermore, >95% of common cis-eQTLs had the same

allelic effects (beta direction) in both lung GTEx and our

lung NAT.

Given their prevalence across tissues and -omics datasets,

and their role in disease risk in other immune related diseases,

we tested whether the expressions of ERAP2, HLA-DQB1, and

PPIL3 correlated with patient survival. Indeed, the expression

of ERAP2 and HLA-DQB1 was positively associated with overall

survival in HNSCC. Note that 109 of 110HNSCC individuals were

HPV-negative. Furthermore, we observed the same trend in the

TCGA HNSCC cohort (Figure S7A).

We calculated PRSs using variants discovered through prior

GWAS to evaluate the global impact of personal risk in CPTAC

participants (Table S7H). For GBM, LSCC, and PDAC, PRSs

were associated with cancer diagnosis as compared with other

cancer types in CPTAC and healthy controls from UKBB

(Figures 7G and S7B). PRSs also stratified patients by disease

aggressiveness, as indicated by disease recurrence and overall

survival rates in PDAC (Figure 7H; same patterns observed for

LSCC). Considering the potential of PRSs, and thatmost risk var-

iants from GWAS are non-coding, we characterized their regula-

tory impact on the tumor proteome. We modeled the effect of

PRSs on protein abundance while controlling for clinical, demo-

graphic, and molecular covariates. We observed few proteins

Figure 7. eQTL, pQTL, and polygenic risk assessment of samples with tumor and normal WGS

(A) Shared number of eGenes (genes with significant eQTLs).

(B) pProteins (proteins with significant pQTLs) across NAT and tumor tissues of different cancer types indicated by an UpSetR plot148 (top 40). Asterisks indicate

that eQTL analysis was not performed for normals due to the limited number of samples.

(C) Intersection of eGenes and pProteins from a Pan-CPTAC (CCRCC, HNSCC, LSCC, and LUAD) comparison across NAT and tumors.

(D) All p values of cis-eQTLs and -pQTLs associated with ERAP2 in LUAD tumor samples. Plot insets highlight the effect of rs2927608 alleles on ERAP2 RNA

expression (top) and protein abundance (bottom).

(E) Colocalization results of eQTLs and pQTLs in ERAP2 across NAT and tumors of different cancer types (PP: posterior probabilities supporting each hypothesis;

H0: no causal variant; H1: causal variant for RNA expression only; H2: causal variant for protein abundance only; H3: distinct causal variants; H4: common causal

variants for eQTL and pQTL).

(F) Comparison of beta coefficients of common cis-eQTLs at 1% FDR between GTEx lung and CPTAC LSCC NAT (top) and LUAD NAT (bottom).

(G) Literature-based polygenic risk scores (PRSs) calculated on CPTAC PDAC samples and comparedwith orthogonal datasets. Data are represented asmedian

and interquartile range. p values for statistical significance for the comparison against ‘‘Cancer CPTAC’’ and ‘‘Controls UK Biobank’’ are provided (t test).

(H) Kaplan-Myer plots estimating recurrence free survival (top) and overall survival (bottom) for samples with high and low PRSs.

(I) Protein abundance changes that correlate with PRS, highlighting that proximal genes (magenta) change less than distal genes.

(J) GSEA shows that high PRS samples are enriched for genes in the adaptive immune system and the RAF/MAPK cascades.

(K) The gnomAD ANC allele frequency (AF) for our top findings, separated by the section in which they are described. Top annotations show overall gnomAD AF

separated by rare and common germline variants (left: gnomAD AF % 0.05%, right: gnomAD AF > 0.05%). y axis displays the ANC population.

See also Figure S7.
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associated with PRS (Figure 7I), implying limited impact at the

single-protein level in CPTAC. However, a pathway-based

approximation of these results with gene-set enrichment ana-

lyses (GSEAs) showed significant overrepresentation of several

biological processes (Figure 7J; Table S7I), suggesting that ge-

netic risk has a cumulative impact that converges in certain bio-

logical processes rather than large alterations in specific pro-

teins. Antigen presentation was among the top pathways

associated with common risk for PDAC, consistent with its

high heritability estimated by pan-cancer immunity studies,20 in

addition to platelet function149 and L1 cell adhesion molecule

(L1CAM) related neural microenvironment remodeling.150 Com-

mon variants also impacted protein levels of the RAS/MAPK

pathway, which is mutated in 96% of pancreatic ductal

tumors.151

We also examined whether variants in this study vary in prev-

alence across genetic ancestries. While our analyses accounted

for ancestry as a covariate (STAR Methods), we recognize that

some variants may differ in frequency among individuals from

different genetic backgrounds. To explore this, we selected

�150 statistically significant variants from our analyses and

compared their ancestry-specific AF using gnomAD for the

groups relevant to CPTAC: admixed-American (AMR), East

Asian (EAS), non-Finnish European (NFE), and South Asian

(SAS). We observed some variants with varying AFs among the

five ancestry groups, while others showed consistent AF across

all groups (Figure 7K). For instance, the truncating SIRPA indel is

more common in EAS individuals, while the CHD4 E139D variant

exhibiting strong ASE is more frequent in AFR individuals. In

contrast, variants like the top SNP from QTL analysis for HLA-

DQB1 (rs9273472) and CASP8 D344H, which influenced a distal

phosphorylation site, showed similar AFs across all ancestries in

gnomAD.

DISCUSSION

While most cancer genomics studies have focused on the role of

somatic mutations, the number of germline variants greatly

exceed that of somatic mutations in a cancer cell. The composi-

tion of these variants is unique, and their effects in oncogenic

processes and cancer evolution remain poorly understood. We

have leveraged the CPTAC cohort with multiple cancer types

to explore the impact of germline variations on cancer-relevant

genes through multiple-omics layers: from DNA to RNA, protein

abundance, and PTM.

To assess the effects of coding variants and their association

with cognate proteins (and PTMs), we used precision peptido-

mics, i.e., the quantification of peptides carrying genetic variants

from individual patients. Integrating bulk proteomic and tran-

scriptomic data with germline variants, we derived mechanistic

inferences on the effects of coding variants. Point mutations at

or near phosphosites altering downstream biological processes

were noted in both tumor and NAT samples. Similar regulatory

mechanisms are seen for mutations far from phosphosites in

linear distance. We have highlighted examples where a distal

linear effect is likely caused by the genetic variants and the

PTM sites being close in 3D, benefiting from predicted 3D

models by AlphaFold2. We are mindful that those models are

imperfect, particularly regarding the relative spatial arrangement

of different domains within the same protein.152 Finally, we also

show that germline indels can shape peptide and protein abun-

dance through effects that cannot be discerned at the RNA level.

We explored the impact of non-coding variants on both gene

expression and protein abundance (QTL analyses), reporting

genes and proteins under germline genetic control across

different NATs and tumors (https://immuneregulation.mssm.

edu). Comparison of our lung NAT eQTLs with lung eQTLs

from GTEx showed an extensive overlap, validating our

approach. Beyond highlighted genes from colocalization and

survival analyses, there are additional tissue-specific or multi-

cancer eGenes and pProteins that merit further investigation.

In recent years, large consortia like GTEx have generated

genome-wide catalogs of regulatory effects that were critical in

understanding the molecular consequences of germline loci

identified by GWAS.153 Here, we provide a pan-tissue catalog

of matched gene expression and protein abundance in tumors

and NATs that expands such efforts. We also observed that

the collective effect of known GWAS risk variants in PDAC,

measured as PRS, correlated better with protein levels within

oncogenic pathways that are distal to the loci that are part of

the PRS. These results suggest that, on top of their local impact

in cis, GWAS loci can collectively alter global proteomic regula-

tion in trans. Despite the case-control design of the cancer dis-

covery GWASs performed to date, our results confirm that a

PRS can stratify patients according to disease aggressiveness

and overall survival rates.10 These findings underscore the value

of proteogenomics in interpreting germline variant effects on

cancer phenotypes and clinical outcomes.

Finally, genetic ancestry might influence the effects of germline

variants.154,155 While diverse, spanning five key genetic ances-

tries—EUR (n = 786), AFR (n = 40), EAS (n = 194), SAS (n = 5),

and AMR (n = 39)—the CPTAC cohort remains underpowered

for discovery of novel contributors to cancer phenotypes for spe-

cific genetic ancestries other than EUR. Also, our cohort is rela-

tively small compared with larger genomic studies.39,156–158

Despite this limitation, we uncovered ancestry-independent asso-

ciations of proteomic, phospho-proteomic, and transcriptomic

variations by accounting for genetic ancestry in our analyses.

In conclusion, the germline genome is the fundamental arena

where the drama of cancer unfolds and is depicted. Amid muta-

tional chaos, the germline plays a critical role that can enable or

constrain the evolution of cancer, dictating the odds of many clin-

ically relevant phenomena: from cancer driver mutations11,159 to

immune responses against cancer cells.20 A deeper understand-

ing, afforded by proteomics, illuminates this complexity, unveiling

altered protein function as pivotal in carcinogenesis.

Limitations of the study
While our dataset is one of the largest multi-omic resources

available, we remain underpowered due to sample size. Our

cohort included patients predominantly of EUR genetic ancestry,

with smaller subsets of other ancestries. Future proteogenomic

studies need to include more diverse populations. All -omics da-

tasets were from bulk analytes, limiting our ability to resolve im-

pacts of germline variants on specific cell types. We only used

the common variants imputed from the 1,000 Genomes
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Project,28 as we did not have high-coverage WGS data. Current

proteomic pipelines rely on generic peptide references to quan-

tify peptide abundance. We addressed this limitation by identi-

fying personalized peptides, but single peptides reflect diverse

allele frequencies from populations and our cancer-specific

cohort. While protein and gene-level quantification are mitigated

by aggregating many peptides, we remain conservative when

addressing the impact of single peptides. AlphaFoldDB

expanded our structural analysis to all human proteins, but its

models are not experimentally validated. Finally, validation of

our findings is challenging due to the limited availability of com-

parable comprehensive datasets, so some of our results will

likely evolve as more samples are analyzed.

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be

directed to and will be fulfilled by Dr. Li Ding (lding@wustl.edu).

Materials availability

This study did not generate new unique reagents.

Data and code availability

Raw and processed proteomics as well as open-access genomic data, can be

obtained via Proteomic Data Commons (PDC) at https://pdc.cancer.gov/pdc/

cptac-pancancer. Raw genomic and transcriptomic data files can be ac-

cessed via the Genomic Data Commons (GDC) Data Portal at https://portal.

gdc.cancer.gov with dbGaP Study Accession: phs001287.v17.p6. Complete

CPTAC Pan-Cancer controlled and processed data, including the precision

proteogenomics data generated in this manuscript, can be accessed via the

Cancer Data Service (CDS). The CPTAC Pan-Cancer data hosted in CDS is

controlled data and can be accessed through the NCI DAC approved, dbGaP

compiled whitelists. Users can access the data for analysis through the

Seven Bridges Cancer Genomics Cloud (SB-CGC) which is one of the NCI-

funded Cloud Resource/platform for compute intensive analysis. Instructions

to access data are as follows: (1) create an account on CGC, Seven Bridges

(https://cgc-accounts.sbgenomics.com/auth/register; (2) get approval from

dbGaP to access the controlled study (https://www.ncbi.nlm.nih.gov/projects/

gap/cgi-bin/study.cgi?study_id=phs001287.v17.p6); (3) log into CGC to access

Cancer Data Service (CDS) File Explore; (4) copy data into your own space and

start analysis and exploration; (5) visit the CDS page to see what studies are

available and instructions and guides to use the resources (https://

dataservice.datacommons.cancer.gov/#/data).

Data used in this publication were generated by CPTAC, accessible

through dbGaP accession numbers phs000892.v6.p1 (‘‘CPTAC Proteoge-

nomic Confirmatory Study’’) and phs001287.v17.p6 (‘‘CPTAC Proteogenomic

Study’’).

We focused on the CPTAC samples with both genomic and proteomic data

available to investigate the Pan-Cancer proteogenomic impacts of oncogenic

drivers. DOIs are listed in the key resources table. Any additional information

and code required to reanalyze the data reported in this paper is available

from the lead contact upon request.
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tiago-Luna, E., and Sánchez-López, J.Y. (2019). The ERBB2 gene poly-

morphisms rs2643194, rs2934971, and rs1058808 are associated with

increased risk of gastric cancer. Braz. J. Med. Biol. Res. 52, e8379.

https://doi.org/10.1590/1414-431X20198379.

62. Alanazi, I.O., Shaik, J.P., Parine, N.R., Azzam, N.A., Alharbi, O., Hawsawi,

Y.M., Oyouni, A.A.A., Al-Amer, O.M., Alzahrani, F., Almadi, M.A., et al.

(2021). Association of HER1 and HER2 Gene Variants in the Predisposi-

tion of Colorectal Cancer. J. Oncol. 2021, 6180337. https://doi.org/10.

1155/2021/6180337.

63. Chen, H., Zhai, Z., Xie, Q., Lai, Y., and Chen, G. (2021). Correlation

between SNPs of PIK3CA, ERBB2 30UTR, and their interactions with

environmental factors and the risk of epithelial ovarian cancer.

J. Assist. Reprod. Genet. 38, 2631–2639. https://doi.org/10.1007/

s10815-021-02177-2.

64. Gao, Y., Tang, X., Cao, J., Rong, R., Yu, Z., Liu, Y., Lu, Y., Liu, X., Han, L.,

Liu, J., et al. (2019). The Effect of HER2 Single Nucleotide Polymorphisms

on Cervical Cancer Susceptibility and Survival in a Chinese Population.

J. Cancer 10, 378–387. https://doi.org/10.7150/jca.27976.

65. Paska, A.V., and Hudler, P. (2015). Aberrant methylation patterns in can-

cer: a clinical view. Biochem. Med. 25, 161–176. https://doi.org/10.

11613/BM.2015.017.

66. Appelqvist, F., Yhr, M., Erlandson, A., Martinsson, T., and Enerbäck, C.
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