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Analysis of 10,478 cancer genomes identifies 
candidate driver genes and opportunities for 
precision oncology

Ben Kinnersley    1,2,11, Amit Sud    1,3,4,5,6,11, Andrew Everall1,11, Alex J. Cornish1, 
Daniel Chubb1, Richard Culliford1, Andreas J. Gruber    7, Adrian Lärkeryd8, 
Costas Mitsopoulos9, David Wedge    10 & Richard Houlston    1 

Tumor genomic profiling is increasingly seen as a prerequisite to guide the 
treatment of patients with cancer. To explore the value of whole-genome 
sequencing (WGS) in broadening the scope of cancers potentially amenable 
to a precision therapy, we analysed whole-genome sequencing data on 
10,478 patients spanning 35 cancer types recruited to the UK 100,000 
Genomes Project. We identified 330 candidate driver genes, including 74 
that are new to any cancer. We estimate that approximately 55% of patients 
studied harbor at least one clinically relevant mutation, predicting either 
sensitivity or resistance to certain treatments or clinical trial eligibility. By 
performing computational chemogenomic analysis of cancer mutations 
we identify additional targets for compounds that represent attractive 
candidates for future clinical trials. This study represents one of the most 
comprehensive efforts thus far to identify cancer driver genes in the real 
world setting and assess their impact on informing precision oncology.

Precision oncology aims to tailor therapy to the unique biology of the 
patient’s cancer, thereby optimizing treatment efficacy and minimizing 
toxicity1,2. Underpinning precision oncology is the concept of somatic 
driver mutations as the foundation of cancer biology3,4.

The expansion in the number of therapeutically actionable 
genes has exposed the limitations of single-analyte genomic assays 
in cancer5. The modest incremental cost of adding additional can-
cer genes to high-throughput sequencing-based panels has made 
the development of drugs targeting increasingly smaller subsets of 
molecularly defined patients with cancer financially and logistically 
feasible6. The development of inhibitors effective in cancers driven by  
rare genomic mutations has required the concurrent development 
of clinical trial designs, such as basket trials, in which eligibility is 

based on mutational status instead of organ site, cancer stage and 
histology7. With the advent of basket studies, many oncologists 
now consider that tumor genomic profiling should be offered to all 
patients with cancer who are not candidates for curative-intent local 
or systemic therapy8.

At present, several standalone tests or a panel are typically used to 
capture a set of genomic, transcriptomic or epigenomic features in a 
tumor to inform patient treatment9. However, falling costs are making 
whole-genome sequencing (WGS) a potentially attractive proposition 
as a single all-encompassing test to identify cancer drivers and other 
genomic features, which may not be captured by standard testing but 
are clinically actionable10. This approach is being explored in the UK by 
the 100,000 Genomes Project (100kGP), which is seeking to deliver the 
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Mutation rates varied across the different cancer types with cuta-
neous melanoma having the highest single nucleotide variant mutation 
count and meningioma the lowest (Extended Data Fig. 2). A total of 945 
samples, notably colorectal and uterine cancers, were hypermutated, 
either as result of defective mismatch repair (dMMR) or POLE mutation. 
Invasive ductal carcinoma of the breast had the highest power for driver 
gene detection (>90% power for a mutation rate of at least 2% higher 
than background) and large cell lung cancer had the lowest power (Fig. 2 
and Supplementary Table 4). Compared with the recent Pan-Cancer 
Analysis of Whole Genomes analysis12, the 100kGP cohort was better 
powered to identify a driver mutation for 19 cancers, notably for breast, 
colorectal, esophageal and uterine cancer, lung adenocarcinoma and 
bladder transitional cell carcinoma where the sample sizes were more 
than tenfold higher.

Spectrum of cancer driver genes
Across all cancer types we identified 770 unique tumor–driver gene 
pairs corresponding to 330 unique candidate cancer driver genes 
(Fig. 3, Extended Data Fig. 3 and Supplementary Table 5). When 

vision of precision oncology through WGS to National Health Service 
(NHS) patients as part of their routine care11.

Here, we report an analysis of WGS data on 10,478 patients span-
ning 35 cancer types recruited to the 100kGP (Fig. 1a). Across all cancer 
types we identify 330 candidate driver genes, including 74 which are 
new to any cancer. We relate these to their actionability both in terms 
of currently approved therapeutic agents and through computational 
chemogenomic analysis to predict candidacy for future clinical trials.

Results
We analysed 10,478 cancer genomes spanning 35 different cancer types 
(Fig. 1b and Supplementary Tables 1 and 2). While broadly reflecting 
the spectrum and frequencies of cancers diagnosed in the UK popula-
tion, there were differences, with an over-representation of colorectal 
and kidney cancers and a paucity of prostate and pancreatic cancers 
(Extended Data Fig. 1). Additionally, for the main cancer types, the 
patients recruited to 100kGP tended to be younger and had earlier 
stage tumors compared to patients in the general UK population (Sup-
plementary Table 3).
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Fig. 1 | Study design and number of samples per tumor type included in 
the analysis. a, Study design. b, Number of samples per tumor type. BileDuct-
AdenoCA, bile duct adenocarcinoma; Bladder-TCC, bladder transitional cell 
carcinoma; Breast-DuctalCA, breast ductal carcinoma; Breast-LobularCA, breast 
lobular carcinoma; CNS-Astro, astrocytoma; CNS-GBM-IDHmut, IDH mutated 
glioblastoma; CNS-GBM-IDHwt, IDH wild-type glioblastoma; CNS-Menin, 
meningioma; CNS-Oligo, oligodendroglioma; ColoRect-AdenoCA, colorectal 
adenocarcinoma; Connective-Chondro, chondrosarcoma; Connective-Leiomyo, 
leiomyosarcoma; Connective-Liposarc, liposarcoma; Connective-Myxofibro, 
myxofibrosarcoma; Connective-Osteosarc, osteosarcoma; Connective-
SCS, spindle cell sarcoma; Connective-SS, synovial sarcoma; Eso-AdenoCA, 

esophageal adenocarcinoma; HeadNeck-SCC, squamous cell carcinoma of the 
head and neck; Kidney-CCRCC, clear cell renal cell carcinoma; Kidney-ChRCC, 
chromophobe renal cell carcinoma; Kidney-PRCC, papillary renal cell carcinoma; 
Liver-HCC, hepatocellular carcinoma; Lung-AdenoCA, lung adenocarcinoma; 
Lung-LargeCell, large cell lung cancer; Lung-SCC, squamous cell carcinoma of 
the lung; Lung-SmallCell, small cell carcinoma of the lung; Mes-Mesothelioma, 
mesothelioma; Ovary-AdenoCA, ovarian adenocarcinoma; Panc-AdenoCA, 
pancreatic adenocarcinoma; Prost-AdenoCA, prostate adenocarcinom; Skin-
Melanoma, melanoma of the skin; Stomach-AdenoCA, gastric adenocarcinoma; 
Testis-GCT, testicular germ cell tumor; Uterus-AdenoCA, uterine 
adenocarcinoma. Fig. 1a created with BioRender.com.

http://www.nature.com/naturegenetics
http://BioRender.com


Nature Genetics | Volume 56 | September 2024 | 1868–1877 1870

Article https://doi.org/10.1038/s41588-024-01785-9

compared to the largest pan-cancer driver analysis, in 21 of 31 cancer 
types where tumor histologies could be matched, we recovered 61% of 
all cancer drivers reported by the Catalogue of Somatic Mutations in 
Cancer (COSMIC), the Integrative OncoGenomics (IntOGen)4 and The 
Cancer Genome Atlas (TCGA) Program pan-cancer analysis reported by 
ref. 13 (Supplementary Table 5). We were able to detect 80% of drivers 
reported for colorectal, breast, lung and ovarian cancers but only <20% 
of drivers reported for hepatocellular and stomach cancers, which may 
be a result of differing sample size or intertumour heterogeneity14. 
The number of identified cancer driver genes varied between cancer 
types, with colorectal and uterine cancers having the most (60 genes) 
and spindle cell carcinoma having the fewest (4 genes). Across the 
35 cancers, we found no correlation between average mutation bur-
den and the number of driver genes in each cancer (Pearson’s r = 0.19, 
P = 0.27). The consensus list also includes 326 tumor–driver pairs that 
have not previously been reported by the Cancer Gene Census, IntOGen 
or the pan-cancer analysis of TCGA4,13 (Supplementary Table 5) and 
74 that have not previously been associated with any specific tissue. 
Almost all of the candidate drivers identified were uncommon, with 
88% (65 of 74) having a mutation frequency <10% in the respective 
cancer type. The highest numbers of new cancer driver genes were 
found for uterine (n = 42), bladder (n = 40) and colorectal (n = 37) can-
cers. Furthermore, we identified drivers in tumor types which have not 
been cataloged by IntOGen4 and ref. 13. These include breast lobular 
carcinoma, meningioma and myxofibrosarcoma. Predictions of known 
cancer driver genes in new cancer types include SPTA1, CHD4 and ASXL1 
in colorectal cancer, FOXO3, MUC16 and ZFPM1 in breast cancers and 
CNTNAP2, CTNND2 and TRRAP in lung adenocarcinoma. Entirely new 
predictions include MAP3K21 (encoding a mixed-lineage kinase) in 
colorectal cancer, USP17L22 (encoding a deubiquitinating enzyme) in 
breast ductal carcinoma and TPTE (encoding a tyrosine phosphatase) 
in lung adenocarcinoma (Supplementary Table 5).

Eighty-five genes were identified as a driver in more than two 
tumor types, with 26 genes functioning as drivers in more than five 
tumor types (Fig. 4a). As expected, TP53 was identified as a driver gene 
in the most tumor types, followed by PIK3CA, ARID1A and PTEN, acting 
as cancer driver genes in 29, 18, 16 and 14 different tumor types, respec-
tively. While many genes function as drivers in several cancer types, 
some drivers are mutated at high frequencies only in specific tumors, 
such as VHL in clear cell renal cell carcinoma and FGFR3 in bladder 
cancer (Fig. 4a). Across drivers operating in several cancer types, the 
clearest examples of domain-specific driver mutations were in EGFR, 
where protein tyrosine and serine/threonine kinase domain mutations 
predominated in lung adenocarcinoma, in contrast to extracellular 
furin-like cysteine-rich region domain mutations in IDH wild-type 
glioblastoma (Supplementary Table 6 and Extended Data Fig. 4a). 
PIK3CA also showed a preference for p85-binding domain mutations 
in uterine adenocarcinoma compared to other cancer types, such as 
breast ductal carcinoma, which are enriched for mutations in the PIK 
family domain (Supplementary Table 6 and Extended Data Fig. 4b). 
Hierarchical clustering of cancers based on the presence of identified 
driver mutations and their respective q value demonstrated clustering 
of cancer types by cell of origin (for example, head and neck and lung 
squamous cell carcinoma) and by organ (for example, breast ductal 
and lobular carcinomas; Extended Data Fig. 5). The ratio of predicted 
activating versus tumor suppressor driver genes varied across tumor 
types with meningioma and myxofibrosarcoma possessing the highest 
and lowest ratios, respectively (Fig. 4b and Supplementary Table 5).

Across the 35 different tumor types in 9,070 unique samples we 
identified 12,606 distinct oncogenic mutations in tumor-relevant 
cancer driver genes. The median number of oncogenic mutations in 
cancer driver genes per sample was two, across all tumors. The highest 
median number of oncogenic mutations in driver genes per sample 
was seen in uterine cancer (n = 6; Extended Data Fig. 6). We observed 
significant differences (Pbinomial < 3.5 × 10−3) in oncogenic mutation 

frequency in cancer driver genes across different tumor histologies 
arising from the same organ. Examples include CDH1, TBX3 and TP53 
in breast cancers, ATRX, CIC, IDH1, PTEN and TP53 in central nervous 
system tumors, IDH1 and TP53 in connective tissue tumors, PBRM1 and 
VHL in renal cancers and EGFR, KMT2D, KRAS, NFE2L2, PTEN, STK11 and 
TP53 in lung cancers (Fig. 5).

Considering all 330 cancer driver genes, 217 featured at least one 
clonal oncogenic mutation (214 clonal, 167 clonal early and 114 clonal 
late events (Supplementary Table 7). APC, TP53 and PIK3CA possessed 
the most clonal oncogenic mutations (Fig. 6a and Extended Data Fig. 7). 
Of the 162 driver genes that harbored at least one subclonal oncogenic 
mutation, ARID1A, TP53 and PIK3CA possessed the most (Fig. 6b and 
Extended Data Fig. 7). Consistent with published work, a high propor-
tion (55%) of all early clonal driver mutations occur in just four genes 
(TP53, APC, KRAS and PIK3CA) whereas the equivalent percentage of 
late and subclonal oncogenic mutations was observed in 19 different 
genes (Supplementary Table 7)15–18. This finding supports a model in 
which early events in cancer evolution tend to occur in a restricted 
set of driver genes and a wider range of drivers feature late in tumor 
evolution. In tumors with more than ten oncogenic mutations, menin-
gioma exhibited the greatest proportion of clonal oncogenic mutations 
(Extended Data Fig. 8a). Large cell lung, testicular germ cell tumor and 
oligodendroglioma carried the highest proportion of early clonal, late 
clonal and subclonal oncogenic mutations, respectively (Extended 
Data Fig. 8b–d).

Sensitivity of WGS mutation detection compared to panels
We initially investigated the performance of WGS to detect clinically 
relevant mutations compared to conventional panel-based testing 
through comparison of mutation calls with Memorial Sloan Kettering 
(MSK) Cancer Center cohorts at 43 established drivers (Supplemen-
tary Note 1). For primary tumors represented in the MSK and 100kGP 
cohorts, the rate of mutations called for each driver gene was com-
parable (Supplementary Figs. 1 and 2). Thereafter, we estimated the 
sensitivity of mutation detection in the 100kGP cohort by extracting 
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per-tumor coverage across the panel of 43 driver genes (Supplemen-
tary Note 1). Specifically, for 88% of cancer driver genes, the expected 
sensitivity for mutation detection was >99% in the 100kGP cohort. Fur-
thermore, for 90% of cancer driver genes, >98% of the coding sequence 
had sufficient coverage such that more than six reads could be used for 
mutation detection after accounting for tumor purity (Supplementary 
Figs. 3–7). These findings are in agreement with published data on the 
diagnostic accuracy of 100kGP WGS compared to panel sequencing 
conducted by Genomics England (sensitivity of 99% for variant allele 
frequency >5% and coverage >70×).

Actionability of driver gene mutations
We next sought to evaluate the landscape of clinically actionable driver 
alterations through reference to the COSMIC and Precision Oncol-
ogy Knowledge Base (OncoKB). We observed that both the fraction of 
samples and proportion of alteration types varied across tissue types. 
Data from COSMIC indicated that 85% of all samples (8,880 of 10,478) 
possessed at least one putatively actionable alteration being targeted 
in a clinical setting (Fig. 7a and Supplementary Table 8), while 55% of 
samples (5,805 of 10,478) had at least one putatively actionable or 

biologically relevant alteration from OncoKB (Fig. 7b and Supplemen-
tary Tables 9 and 10). Across all cancer types, 15% (1,560 of 10,470) 
of the patients would be eligible for a currently approved therapy as 
defined by OncoKB. Of the actionable mutations defined by OncoKB 
(n = 9,639), 5,823 were clonal, 2,632 were early clonal, 229 were late 
clonal and 852 were subclonal.

The most common putatively actionable alterations across all of 
the 35 cancer types were mutations in PIK3CA, KRAS and PTEN (Supple-
mentary Fig. 8). PIK3CA encodes the p110α protein, which is a catalytic 
subunit of phosphatidylinositol 3-kinase (PI3K). Specific oncogenic 
missense mutations in PIK3CA were present in 50% of lobular breast can-
cers and 38% of ductal breast cancers and their presence is an indication 
for the use of PI3Kα inhibitor alpelisib19. These mutations are present 
in a number of cancers including colorectal (20%) and uterine cancers 
(47%) and in these tumor types are subject to early clinical studies with 
an allosteric inhibitor of PI3Kα20. We found high fractions of patients 
with pancreatic cancer, colorectal cancer and lung adenocarcinoma 
with actionable KRAS mutations (39–64% of all cases). The KRAS G12C 
mutation was present in 17% of lung adenocarcinoma cases and is tar-
geted by mutation-specific selective covalent inhibition with adagrasib 

C
>A

C
>G

C
>T

T>
A

T>
C

T>
G

a

AKT1

ANK1

APC

ARID1A
ATM

ATRX

BAP1

BRAF

CDKN2A

CIC

CSMD3

CTNNB1

EGFR

ERBB2

FAT1

FBXW7

FGFR3

FUBP1

IDH1

KIT

KMT2C
KMT2D

KRAS

LRP1B

MGAM

MTOR

NF1

NF2

NOTCH1

NRAS

PDGFRA

PIK3CA

PKHD1L1

PTEN

RB1

SMAD4
SYNE1

TP53
TRAF7

TSC1

VHL

0

25

50

75

0 10 20 30

Number of tumor types

M
ax

im
um

 m
ut

at
io

n 
pr

ev
al

en
ce

 in
 a

 tu
m

or
 ty

pe
 (%

)

b

Connective-Myxofibro
Panc-AdenoCA

Lung-SCC
HeadNeck-SCC
Prost-AdenoCA

Connective-Leiomyo
ColoRect-AdenoCA

Lung-AdenoCA
Breast-LobularCA
Breast-DuctalCA
CNS-GBM-IDHwt

Bladder-TCC
Eso-AdenoCA

Skin-Melanoma
Stomach-AdenoCA

CNS-Oligo
Lung-SmallCell
Kidney-CCRCC

Uterus-AdenoCA
CNS-GBM-IDHmut

Connective-SS
Kidney-ChRCC

Connective-Osteosarc
Lung-LargeCell

Mes-Mesothelioma
Ovary-AdenoCA

CNS-Astro
Connective-SCS

Connective-Liposarc
Testis-GCT

Kidney-PRCC
Liver-HCC

Connective-Chondro
BileDuct-AdenoCA

CNS-Menin

75 50 25 0 25 50 75

Percentage of tumor-specific driver genes

Tu
m

or
 g

ro
up

Activating
Ambiguous
Loss of function

Predicted 
driver role

Fig. 4 | Distribution and predicted function of candidate cancer driver genes 
across tumor types. a, Distribution of driver genes across different types of 
cancer: y axis, maximal mutational prevalence in a tumor type; x axis, number of 
tumor types in which the driver gene is identified. Genes labeled are candidate 

drivers in at least six tumor types or have a maximum mutation prevalence in a 
tumor type of >17%. b, Distribution of cancer driver gene function associated 
with each cancer type: y axis, tumor group; x axis, percentage of tumor-specific 
driver genes.

ColoRect-AdenoCA
Uterus-AdenoCA
Breast-DuctalCA
Breast-LobularCA
Bladder-TCC
Lung-SCC
HeadNeck-SCC
Lung-AdenoCA
Ovary-AdenoCA
CNS-GBM-IDHwt
Skin-Melanoma
Kidney-CCRCC
Prost-AdenoCA
Panc-AdenoCA
BileDuct-AdenoCA
Connective-Myxofibro
Stomach-AdenoCA
Eso-AdenoCA
Connective-Leiomyo
Connective-Liposarc
Connective-SCS
Kidney-ChRCC
Lung-SmallCell
Lung-LargeCell
CNS-Menin
Kidney-PRCC
Testis-GCT
Mes-Mesothelioma
Connective-Osteosarc
Liver-HCC
Connective-SS
CNS-Astro
CNS-GBM-IDHmut
Connective-Chondro
CNS-Oligo

TP
53

PI
K3

C
A

PT
EN

AR
ID
1A

KR
AS

BR
AF

N
RA

S
FB

XW
7

AP
C

SM
AD

4
AT

M
ER

BB
3

M
TO

R
D
U
SP

16
AC

VR
2A

RN
F4

3
ID
H
1

AT
RX

C
D
KN

2A N
F1

EG
FR

AK
T1

KM
T2

C
FO

XA
1

M
AP

3K
1

M
AP

2K
4

RU
N
X1

N
C
O
R1

ZF
PM

1
SP

EN
G
AT
A3

SF
3B

1
ER

BB
2

C
D
H
1

TB
X3

C
BF

B
RB

1
KM

T2
D

TS
C
1

KD
M
6A

C
RE

BB
P

ST
AG

2
EL

F3
EP

30
0

KM
T2

A
RH

O
A

C
TN

N
B1

PP
P2

R1
A

PI
K3

R1
FG

FR
2

C
H
D
4

BC
O
R

SP
O
P

C
IC

FA
T1

N
O
TC

H
1

N
FE

2L
2

SE
TD

2
BA

P1
VH

L
PB

RM
1

M
G
A

RB
M
10

ST
K1

1
KE

AP
1

AR
ID
2

RA
C
1

ID
H
2

C
AS

P8
M
AX

AR
H
G
AP

35
C
TC

F
ES

R1
N
F2

KL
F4

TR
AF

7
AR

ID
1B

SI
N
3A

G
N
AS

H
LA

-A
M
AP

2K
1

PS
PC

1
ZF

H
X3

M
ED

12
ZM

YM
3

C
D
K1

2
H
RA

S
C
D
KN

1A
AS

XL
1

M
U
C
4

ZN
F9

8
ZS

C
AN

5A
M
U
C
20

C
D
KN

1B
FO

XO
3

U
SP

17
L2

2
SE

C
22

B
SM

AR
C
A4

PR
PF

8
TE

T2
C
U
L3

SM
AR

C
B1

RO
C
K1

PR
AM

EF
15

AG
AP

6
BR

C
A2

C
SM

D
3

H
LA

-B
M
YH

9
SE

TD
1B

PD
G
FR

A
LR

P1
B

FA
T3

N
C
O
R2

C
D
H
10

N
BE

A
PD

G
FR

B
EP

H
A3

N
SD

1
AT

R
BI
RC

6
RO

BO
2

PT
PR

B
M
U
C
16

PD
E4

D
IP

FA
T4

TR
RA

P
SL

C
35

G
5

D
C
TN

1
AK

AP
9

C
N
TN

AP
2

N
4B

P2
D
D
X3

X
M
ET

PT
PN

11
KI
T

–log10q
>6
4
2
0

Fig. 3 | Heatmap of candidate cancer driver genes identified in at least two different cancer types. Heatmap intensity proportional to q value.

http://www.nature.com/naturegenetics


Nature Genetics | Volume 56 | September 2024 | 1868–1877 1872

Article https://doi.org/10.1038/s41588-024-01785-9

or sotorasib21,22. PI3Kβ inhibition is of significant biological interest 
in patients with oncogenic inactivating PTEN mutations, as PI3Kβ is 
thought to drive cellular proliferation in these tumors. Inactivating 
PTEN mutations were prevalent in melanoma (10%), hepatocellular 
carcinoma (13%), squamous cell carcinoma of the lung (15%), glioblas-
toma multiforme (29%) and uterine carcinoma (66%) and their presence 
would result in eligibility for early studies of PI3Kβ inhibition23.

Landscape of clinical actionability
In addition to actionable mutations in single genes, other classes of 
molecular alterations are recognized as tumor-agnostic biomark-
ers of drug response. These include mutational profiles caused by 
dMMR/POLE mutations and homologous recombination deficiency 
(HRD), which represent phenotypic markers for response to immu-
notherapy and PARP inhibition respectively. A total of 319 tumors (3%) 
exhibited a mutational signature for HRD, which provides an indica-
tion for PARP inhibition therapy and potential sensitivity to platinum 
chemotherapy24–28. As demonstrated in our companion paper, the etio-
logical basis of HRD was, however, only identifiable in 16% of these cases 
based on biallelic inactivation of BRCA1, BRCA2, PALB2, BRIP1 or RAD51B 
through germline and somatic mutations29. While other cases may be 
caused by promoter methylation, which could not be assessed because 
these data are not available for 100kGP samples, the findings provide 
a strong rationale for extending the number of patients potentially 
eligible for PARP inhibitors rather than solely relying on BRCA-testing. 
A total of 1,309 tumors possessed a high coding tumor mutational 
burden (more than ten mutations per megabase, Mb) and 144 cancers 
had evidence of dMMR. Considering these collectively would suggest 
that 1,312 patients may be eligible for checkpoint inhibition30,31. To 

explore the prospect of several targeted therapies being used in the 
same patient, we combined the OncoKB clinical actionability annota-
tions with that of TMB, dMMR and HRD clinical actionability annota-
tions. In total, 11,503 independent unique gene targets were present 
in 6,151 samples with 34% (3,577 of 10,478) of tumors possessing one, 
13% (1,361 of 10,478) two and 12% (1,213 of 10,478) possessing at least 
three clinically actionable driver mutations.

Expanding the druggable cancer genome
An opportunity emerging from the systematic analysis of cancer 
genomes is the identification of new therapeutic intervention strate-
gies. Of the 330 candidate cancer driver genes identified in this study, 
261 (79%) are not currently identified as therapeutic targets in either 
COSMIC or OncoKB databases. As a means of triaging these genes as 
candidates for therapeutic intervention, we assessed the essential-
ity and selectivity of driver genes and their druggability using RNAi/
CRISPR DepMap data and the integrative cancer-focused knowledge-
base, canSAR, respectively32,33. We found 96 of 261 (37%) of these genes 
are predicted to be commonly essential and of these 12 of 96 (13%) 
have a chemical probe available and 35 of 96 (36%) have a ligandable 
three-dimensional (3D) structure (Supplementary Table 11).

Motivated by the observation that targeting proteins which inter-
act with cancer driver genes can result in successful precision oncology 
strategies, we sought to expand the network of druggable targets in 
cancer34,35. To this end, we used canSAR to map and pharmacologically 
annotate networks of the cancer genes identified for each tumor type. 
Specifically, we seeded networks with driver genes identified in each 
tumor group and used transcriptional and curated protein–protein 
interactions to recover a refined cancer-specific network of proteins, 
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each protein being annotated on the basis of several assessments of 
‘druggability’, that is the likelihood of the protein being amenable to 
small molecule drug intervention. After seeding each cancer-specific 
network with their respective drivers, we yielded a total of 631 distinct 
proteins across all cancers (Supplementary Table 12). The median num-
ber of unique proteins in each network across all cohorts was 57, with 
colorectal cancer possessing the largest network (n = 231; Extended 
Data Fig. 9) and spindle cell carcinoma possessing the smallest net-
work (n = 10). As expected there was a correlation between network 
size and number of identified drivers for each cancer type (Pearson’s 
r = 0.9, P = 1.23 × 10−9).

Of these 631 proteins, 58% (n = 369) were retrieved solely through 
network analysis, of which most (n = 323) were not formally identified 
as candidate driver genes in any cancer type (hereafter referred to as 
cancer-network proteins). Notable examples include HDAC1, CDK2 
and CDK1, which were present in 31, 29 and 28 cohorts, respectively. 
We observed 70% (n = 225) of these cancer-network proteins as being 
targetable by existing approved or investigational therapies, with 
notable examples including BCL2 and BTK. Of the remaining 97 genes, 
34 are commonly essential, 11 possess concordant lineage specificity, 
48 are ligandable by 3D structure and 11 have an existing high-quality 
probe available (Supplementary Table 13). Collectively these data 
provide potential future opportunities for therapy for several cancers. 
For example, CDC5L, a core component of the Prp19 (hPrp19)/Cdc5L 
pre-RNA splicing complex, is part of the melanoma cancer protein 
network36. This protein is predicted to be commonly essential with 
lineage specificity and has a 3D ligandable structure.

Discussion
Clinical and laboratory observations have led to the recognition 
that genomic profiling of tumors is increasingly important for the 

management of patients with cancers37. To explore the value of WGS 
to precision oncology we have analysed WGS data on 10,470 patients 
recruited to the 100kGP study.

Across all cancers, we identified 330 cancer driver genes, 74 of 
which are new to any cancer type. The candidate driver gene list is 
limited by focusing on point mutations and small indels without 
consideration of copy-number alterations, genomic fusions or meth-
ylation events. Nevertheless, we believe it represents one of the most 
comprehensive efforts thus far to identify cancer driver genes and 
serves as an important research asset. The similarities and differences 
in driver mutation frequencies in cancers arising from the same organ 
imply both shared and divergent pathways in oncogenesis. Notably, 
however, many driver mutations are common across several differ-
ent tumor types. If clinically translated, these observations suggest 
that currently 55% of patients’ tumors harbor a potentially actionable 
mutation, either in terms of predicting sensitivity to certain treat-
ments or clinical trial eligibility. This contrasts with 22% achievable 
if based on the current small variant testing panels in widespread 
use38. Although our assumption is predicated on approved drugs as 
a proxy for effective cancer therapies, a recent study of cancer drug 
approvals by the Food and Drug Administration (FDA) concluded 
that new cancer drug approvals reduce the risk of death and tumor 
progression39. To inform potential future therapeutic opportunities, 
we applied established chemogenomic technologies to map and 
pharmacologically annotate the cellular network of cancer genes 
identified by WGS. Through annotation of cellular networks with 
measures of essentiality and selectivity, we were able to highlight 
additional potential therapeutic targets in cancer. It is likely that such 
endeavors will be improved by exploiting emergent high-throughput 
reporter assays to assess the functional consequences of somatic 
driver mutations in greater detail40.
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The strengths of this study not only include the cohort size but 
the combination of systematic processing of samples and data aris-
ing from several treatment centers across England. These strengths 
minimize the impact of between-center sequencing effects while 
ensuring a representative cohort of cancers are captured41. We do, 

however, acknowledge that while the spectrum of cancers included in 
our analysis is largely representative of those diagnosed in the United 
Kingdom, patients recruited to 100kGP are younger and predominantly 
have early-stage disease. Furthermore, characteristics such as patient 
ancestry and geography can affect the mutagenic profile of tumors, 
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Fig. 7 | Clinical actionability ascribable to each candidate cancer driver 
gene. a, Clinical actionability ascribable to each candidate cancer driver gene 
according to COSMIC by cancer type. Tumors were annotated by the highest 
scoring gene mutation–indication pairing, with ‘None’ indicating no actionable 

mutations were detected in the tumor. b, Clinical actionability ascribable to each 
candidate cancer driver gene according to OncoKB by cancer type. Tumors were 
annotated by the highest scoring gene mutation–indication pairing, with ‘None’ 
indicating no actionable mutations were detected in the tumor.
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which potentially impacts on the generalizability of our findings to 
worldwide populations42,43.

Accepting these limitations, our observations indicate that, 
depending on cancer type, approximately 15% of patients are poten-
tially eligible for a currently approved therapy targeting an oncogenic 
driver. Our discovery analysis, however, implies that far more patients 
may potentially be candidates for a therapy targeting a driver mutation 
or pathway. A long-standing criticism of precision oncology is that 
often its proponents overstate the clinical actionability of individual 
genes or genomic variants44. Mutations that are clinically validated and 
FDA-recognized as predictive biomarkers of drug response are often 
grouped together as clinically actionable, with such mutations poten-
tially erroneously identified as the putative basis for outlier exceptional 
responses. To better communicate the strength of evidence support-
ing the clinical actionability of individual mutant alleles, many variant 
knowledge bases stratify genomic alterations on the basis of the level 
of clinical and/or biological data supporting their use as a predictive 
biomarker of drug response or resistance. Here, we have sought to 
address such concerns by making use of well-curated resources to 
assign actionability to driver mutations. Specifically, we have queried 
knowledge databases which are regularly curated by an expert panel 
and are therefore recognized to reflect the current state of knowledge31.

While the 100kGP was predicated on delivering diagnostic tests 
for well-established actionable mutations in NHS cancer patients with 
high sensitivity, concern has been raised over missing well-recognized 
clinically actionable mutations45. In our analysis the frequency of estab-
lished cancer-specific oncogenic drivers recovered was, however, 
comparable to MSK-IMPACT and MSK-MET6,9. Moreover, the sensitivity 
of 100× WGS to identify mutations was high even for samples with low 
tumor purity (Supplementary Note 1 and Supplementary Figs. 3–7).

A barrier to the broader success of precision oncology paradigms 
may be the many ‘undruggable’ oncogenic mutations coupled with the 
fact that targeting downstream effectors typically fails to demonstrate 
the levels of clinical efficacy of drugs that directly inhibit the mutated 
oncoprotein. Recent developments in protein structure prediction, 
new degraders, covalent inhibition and allosteric protein domain 
maps seek to unlock these ‘undruggable’ proteins46–49. Furthermore, 
WGS allows for the extension of analyses beyond the consideration of 
individual genetic alterations, thereby affording a clinically significant 
benefit over targeted panel sequencing assays. Mutational signatures 
associated with dMMR and HRD are increasingly being shown to be 
clinically relevant to defining responsiveness to immunotherapy and 
PARP inhibition, respectively24,30. Additionally, there is increasing 
evidence that other signatures reflecting the DNA repair capacity of 
cancer cells are predictive of drug responsiveness to other agents5,50. A 
more detailed discussion and comprehensive description of all classes 
of mutational signatures observed across the 100kGP are reported in 
our companion paper29. The ability to robustly characterize mutational 
signatures may therefore prove to be a major clinically significant 
incremental benefit of WGS over targeted panel sequencing assays. 
Moreover, the provision of WGS is likely to play a greater role in patient 
management given that T cell-based therapies are of increasing impor-
tance and in silico approaches are now used to predict the presence of 
immunogenic tumor-specific neoantigens from WGS51–54.

Despite the merits of WGS as a one-stop clinical assay, its wider 
adoption outside selected academic and commercial centers has been 
limited37. A great hurdle is that the tumor material available for many 
patients is of insufficient quantity, quality or purity for these broader 
sequencing platforms. Indeed, in the 100kGP the lack of access to fresh 
frozen samples (and/or those of sufficient quantity) precluded the 
analysis of tumors from many patients11. In designing clinical assays, 
the limitations imposed by cost and sequencing capacity require the 
balancing of sequencing breadth and depth41. At present, the higher 
coverage of targeted assays represents an advantage over WGS for 
detection of alterations in genes clinically validated as biomarkers of 

drug response, especially in samples with poor DNA quality or high stro-
mal contamination. A wider adoption of WGS will require further reduc-
tions in sequencing costs and technological improvements to enable 
the use of lower-quality, archival formalin-fixed, paraffin-embedded 
tumor tissue55. Any such developments will have to address the issue 
that formalin fixation adversely affects DNA quality and the ability to 
reliably call variants from WGS data, even when using bioinformatic 
correction41,56,57. Aside from such technical issues there are also inher-
ent limitations to short-read WGS. Notably, structural variants cannot 
be robustly called, with low concordance being a feature of present 
implemented algorithms58,59. It is likely that this limitation will only be 
addressed by adoption of long-read sequencing, albeit presently this 
incurs a high requirement for DNA and further cost, thus restricting its 
use in the diagnostic setting60. The continued decline in sequencing 
costs and the identification of new genomic biomarkers predictive of 
drug response have driven the rapid adoption of multigene profiling 
of patients as a component of routine cancer care. As our analysis indi-
cates, the future adoption of WGS or broader panels has the potential to 
enable more accurate assessments of the driver mutational landscape 
predictive of drug response.
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Methods
The 100kGP cohort
The analysed cohort comprised tumor–normal sample pairs from 
patients with primary cancers recruited to 100kGP (v.11 release) 
through 13 Genomic Medicine Centers across England (Supplementary 
Fig. 9). Genomics England has obtained written informed consent from 
all participants. We restricted our analysis to high-quality sequencing 
data derived from PCR-free, flash-frozen primary solid tumor samples 
from 10,470 adults (34 bile duct, 305 bladder, 2,306 breast, 2,324 colo-
rectal, 440 central nervous system, 91 esophageal, 201 head and neck, 
1,045 renal cell, 24 liver, 1,110 lung, 35 mesothelioma, 607 soft tissue, 
454 ovarian, 94 pancreas, 366 prostate, 270 melanoma, 72 gastric, 51 
testicular and 649 uterus) (Supplementary Tables 1–3). Comprehensive 
clinicopathology information on the patients is provided in Supple-
mentary Table 3 and complete details on sample curation, tumor purity 
per cancer type (Extended Data Fig. 10), WGS, somatic variant calling, 
mutation annotation and power calculations are provided in Supple-
mentary Note 1. We identified mutational signatures associated with 
dMMR and HRD in tumors using SigProfilerExtractor complemented 
by mSINGS and HRDetect (Supplementary Note 1)29,61,62.

Identification and timing of driver genes
Cancer driver genes for each of the tumor types were identified 
using the IntOGen pipeline (Supplementary Note 1)4. We examined 
the sensitivity of WGS in the 100kGP cohort to detect mutations in 
well-established driver genes based on sample purity and gene cover-
age and by comparing the call rates of panel sequencing reported in 
the Integrated Mutation Profiling of Actionable Cancer Targets and 
Metastatic Events and Tropisms studies of cancer conducted by the 
MSK Cancer Center (Supplementary Note 1)6,63. The relative evolu-
tionary timings of candidate driver mutations were obtained using 
MutationTimeR (Supplementary Note 1)15.

Actionability of driver gene mutations and networks
We first queried the OncoKB and COSMIC Mutation Actionability in 
Precision Oncology Product databases to evaluate the therapeutic 
implications of genetic events31,64. Both databases catalog approved 
marketed drugs having demonstrated efficacy in tumors with specified 
driver gene mutations, based on clinical trials and published clinical 
evidence. OncoKB also provides compelling biological evidence sup-
porting the cancer driver gene as being predictive of a response to a 
given drug.

To undertake a chemogenic analysis of cancer networks for each 
cancer type, we used protein products of the cancer driver genes to 
seed a search for all interacting proteins in the canSAR interactome33, 
which is based on information from eight databases, including the 
IMeX consortium65, Phosphosite66 and key publications. We annotated 
proteins with pharmacological and druggability data using canSAR’s 
Cancer Protein Annotation Tool. Essential and selective genes including 
lineage specificity were ascertained from the ShinyDepMap analysis 
server (Supplementary Note 1)32.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Summary statistics for each tumor group are provided in the Supplemen-
tary Tables where such data do not enable identification of participants. 
All sample-specific WGS data and processed files from the 100,000 
Genomes Project can be accessed by joining the Pan Cancer Genomics 
England Clinical Interpretation Partnership (GeCIP) Domain once an 
individual’s data access has been approved (https://www.genomicseng-
land.co.uk/research/pan-cancer-and-molecular-oncology-communit
y). The link to becoming a member of the Genomics England research 

network and obtaining access can be found at https://www.genomic-
sengland.co.uk/research/academic/join-gecip. The process involves 
an online application, verification by the applicant’s institution, com-
pletion of a short information governance training course and veri-
fication of approval by Genomics England. Please see https://www.
genomicsengland.co.uk/research/academic for more information. 
The Genomics England data access agreement can be obtained from 
figshare at https://doi.org/10.6084/m9.figshare.4530893.v7 (ref. 67). All 
analysis of Genomics England data must take place within the Genom-
ics England Research Environment (https://www.genomicsengland.
co.uk/understanding-genomics/data). The 100,000 Genomes Pro-
ject publication policies can be obtained from https://www.genom-
icsengland.co.uk/about-gecip/publications. Samples and results 
used in this study are provided in Genomics England under /re_gecip/
shared_allGeCIPs/pancancer_drivers/results/. A MAF-like file detailing 
coding mutations across all 100kGP tumors analysed is available at /
re_gecip/shared_allGeCIPs/pancancer_drivers/results/. The COSMIC 
and OncoKB clinical actionability data are available from https://cancer.
sanger.ac.uk/actionability and https://www.oncokb.org/actionable
Genes#sections=Tx, respectively. The canSAR chemogenomics data 
are available from https://cansar.ai/. The NHS Genomic Test Directory 
for Cancer is available from https://www.england.nhs.uk/publication/
national-genomic-test-directories/. Lists of drivers from previous stud-
ies were obtained from COSMIC (https://cancer.sanger.ac.uk/cmc/
home), IntOGen (https://www.intogen.org/search) and the The Cancer 
Genome Atlas (TCGA) Program pan-cancer analysis reported by ref. 13. 
Somatic mutations were annotated to the cached version of GRCh38 
in VEP v.101.

Code availability
Details and code for using the IntOGen framework are available at 
https://intogen.readthedocs.io/en/latest/index.html. The specific 
code to perform this analysis is available in the Genomics England 
research environment (https://re-docs.genomicsengland.co.uk/
access/) under /re_gecip/shared_allGeCIPs/pancancer_drivers/code/. 
The link to becoming a member of the Genomics England research 
network and obtaining access can be found at https://www.genomic-
sengland.co.uk/research/academic/join-gecip. The code to perform 
the canSAR chemogenomics analysis is available through Zenodo 
(https://doi.org/10.5281/zenodo.8329054) (ref. 68).
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Extended Data Fig. 2 | Mutation burden of tumours by each tumour type. The number of samples contributing to each tumour type are shown above the plot. 
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Extended Data Fig. 3 | Circos heatmap of candidate cancer driver genes identified. Heatmap intensity proportional to the q value.
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Extended Data Fig. 4 | Mutation plots and pfam domain overlap for: (a) 
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specific mutations were assessed by considering the cancer drivers where 
smRegions is a significant bidder (Q-value < 0.1) and the driver is annotated in 
multiple cancer types.
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Extended Data Fig. 5 | Hierarchical clustering of tumour types based on P-value of candidate driver genes across the 35 different tumour types. Clustering 
performed using the hclust function in R.
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Extended Data Fig. 6 | Per-tumour distribution of oncogenic mutations in 
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Analysis restricted to driver genes as predicted by IntOGen in the given cancer 

type. Oncogenicity predicted using OncoKB. The line within the box shows the 
median number of oncogenic mutations per sample in the cancer type. The box 
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Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Samples were collected and processed by Genomics England. The code used for curation of samples is available inside the Genomics England 
Research Environment under /re_gecip/shared_allGeCIPs/pancancer_signatures/code/processClinicalData. 

Data analysis Details and code for using the Intogen framework are available here (https://intogen.readthedocs.io/en/latest/index.html). The specific code 
to perform this analysis is available in the Genomics England research environment under /re_gecip/shared_allGeCIPs/pancancer_drivers/
code/. The link to becoming a member of the Genomics England research network and obtaining access can be found here https://
www.genomicsengland.co.uk/research/academic/join-gecip. The code to perform the canSAR chemogenomics analysis is available through 
Zenodo (https://zenodo.org/record/8329054). 
Additional packages/softwware used: 
VerifyBamID v1.1.3 = https://github.com/statgen/verifyBamID 
Ccube  v1 = https://github.com/keyuan/ccube 
Isaac aligner v03.16.02.19 = https://github.com/Illumina/Isaac3 
Strelka v2.4.7 = https://github.com/Illumina/strelka 
bcftools v1.9 = https://samtools.github.io/bcftools/bcftools.html 
alleleCount-FixVAF v4.1.0 = https://github.com/danchubb/alleleCount-FixVAF 
VEP v101 = https://github.com/Ensembl/ensembl-vep 
CADD v1.6 = https://github.com/kircherlab/CADD-scripts/ 
OncoKb v3.11 = https://www.oncokb.org/api-access 
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Battenberg v2.2.8 =https://github.com/Wedge-lab/battenberg 
Delly v0.7.9= https://github.com/dellytools/delly 
Lumpy v0.2.13 = https://github.com/arq5x/lumpy-sv/releases 
Manta v1.5.0 = https://github.com/Illumina/manta 
GATK v.4.4.0 = https://github.com/broadinstitute/gatk 
BEDOPS v2.4.2 = https://github.com/bedops/bedops 
bedtools v2.3.0 = https://bedtools.readthedocs.io/en/latest/index.html 
MutationTimeR v0.99.2  = https://github.com/gerstung-lab/MutationTimeR

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

Summary statistics for each tumour group are provided in the supplementary tables where such data does not enable identification of participants. All sample-
specific WGS data and processed files from the 100,000 Genomes Project can be accessed by joining the Pan Cancer Genomics England Clinical Interpretation 
Partnership (GeCIP) Domain once an individual’s data access has been approved (https://www.genomicsengland.co.uk/research/pan-cancer). The link to becoming 
a member of the genomics england research network and having access can be found here https://www.genomicsengland.co.uk/research/academic/join-gecip. The 
process involves an online application, verification by the applicant’s institution, completion of a short information governance training course, and verification of 
approval by Genomics England. Please see https://www.genomicsengland.co.uk/research/academic for more information. The Genomics England data access 
agreement can be obtained from https://figshare.com/articles/dataset/GenomicEnglandProtocol_pdf/4530893/7. All analysis of Genomics England data must take 
place within the Genomics England Research Environment (https://www.genomicsengland.co.uk/understanding-genomics/data). The 100,000 Genomes Project 
publication policies can be obtained from https://www. genomicsengland.co.uk/about-gecip/publications. Samples and results used in this study are provided in 
Genomics England under /re_gecip/shared_allGeCIPs/pancancer_drivers/results/. A MAF-like file detailing coding mutations across all 100kGP tumours analysed is 
available at /re_gecip/shared_allGeCIPs/pancancer_drivers/results/. The COSMIC and OncoKB clinical actionability data are available from https://
cancer.sanger.ac.uk/actionability and https://www.oncokb.org/actionableGenes#sections=Tx, respectively. The canSAR chemogenomics data are available from 
https://cansar.ai/. The NHS Genomic Test Directory for Cancer is available from https://www.england.nhs.uk/publication/national-genomic-test-directories/. List of 
drivers from prior studies obtained from COSMIC (https://cancer.sanger.ac.uk/cmc/home), Intogen (https://www.intogen.org/search) and and the The Cancer 
Genome Atlas (TCGA) Program pan-cancer analysis reported by Bailey et al. Somatic mutations were annotated to the cached version of GRCh38 in VEP v101.

Research involving human participants, their data, or biological material
Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender Sex was used as reported by NHSD, PHE/NCRAS and the GMCs where this matched the inferred sex from genomic 
sequencing. Where they do not match the sample was excluded.

Reporting on race, ethnicity, or 
other socially relevant 
groupings

Reported race, ethnicity, or other socially relevant groupings were not used in this study.

Population characteristics Information relating to the cohort in this analysis are provided in supplementary table 3. The collection and processing of 
treatment information is described in detail in the methods.

Recruitment Clinical and demographic data were obtained from NHS Digital (NHSD), Public Health England’s National Cancer Registration 
and Analysis Service (PHE-NCRAS) and the Genomic Medicine Centres (GMCs) through the Genomics England Research 
Environment.

Ethics oversight The 100,000 Genomes Project protocol was approved  by  the  East  of  England  and  South  Cambridge  Research  Ethics  
Committee  on  20  February  2015, REC reference 14/EE/1112

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size 10,478 samples were included in the full cohort. Exact sample sizes for tumour groups are provided in supplementary table 2. Sample size was 
chosen based on the availability of whole genome sequencing of tumour/normal pairs in the Genomics England research environment.

Data exclusions A detailed description of the sample quality control is provided in the methods. Supplementary table 1 provides information on how many 
samples were excluded. Sequenced tumour samples were excluded if clinical data were missing or if unresolvable conflicts existed between 
the clinical data sources (GMCs, NHSD, PHE-NCRAS, histology reports). In total 2,251/14,129 (15.9%) of tumour samples were excluded based 
on availability and consistency of reported sex, tumour histology, tumour type, sampling date or if the participant was recorded as less than 
18 years old at the time of sampling. 267/11878 (2.2%) of tumour samples with required clinical data available were excluded based on 
tumour sample purity and sequencing data quality. Duplicate tumour samples were also removed, to ensure that no individual was 
represented more than once in a tumour group. If multiple sequenced tumour samples from the same tumour group were available for an 
individual, we preferentially kept primary tumour samples with highest purity. Non-solid tumours were removed from this analysis. Based on 
these criteria, 10,478 tumour samples were suitable for analysis.

Replication This study has an observational rather than an experimental study design, and only one sample was sequenced from each participant, in the 
great majority of cases. We replicate many of the findings from previously published studies of somatic cancer driver genes.

Randomization This study has an observational rather than an experimental study design hence randomisation of study participants is not relevant.

Blinding This study used real-world observation data collected from NHS trusts. The investigators did not have control over sample selection, collection 
and processing and as such blinding is not relevant to this study.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Plants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Novel plant genotypes Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches, 
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the 
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe 
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor 
was applied.

Seed stocks Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If 
plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Authentication Describe any authentication procedures for each seed stock used or novel genotype generated. Describe any experiments used to 
assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism, 
off-target gene editing) were examined.

Plants
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